

THE SOUL OF A NEW MACHINE
Tracy Kidder

BACK BAY BOOKS
Little, Brown and Company

New York Boston London

Begin Reading
Table of Contents
Copyright Page

To Richard Todd

Prologue

A GOOD MAN IN A STORM

ALL THE WAY to the horizon in the last light, the sea was just degrees of gray,
rolling and frothy on the surface. From the cockpit of a small white sloop—
she was thirty-five feet long—the waves looked like hills coming up from
behind, and most of the crew preferred not to glance at them. There were no
other boats in sight, but off to the south for a while they could see the
reassuring outlines of the coast. Then it got dark. Running under shortened
sails in front of the northeaster, the boat rocked one way, gave a thump, and
then it rolled the other. The pots and pans in the galley clanged. A six-pack of
beer, which someone had forgotten to stow away, slid back and forth across
the cabin floor, over and over again. Sometime late that night, one of the
crew raised a voice against the wind and asked, “What are we trying to
prove?”

All of them were adults. The owner and captain was a lawyer in his
sixties. There were a psychologist and a physician and a professor, all of
them in their late thirties, and also a man named Tom West. West was rather
mysterious, being the merest acquaintance to one of them and a stranger to
the others. They were bound for New York from Portland, Maine, on
yachtsman’s business, which is to say, primarily for sport. And when they
had set sail in sheltered Casco Bay earlier that evening, decked out bravely in
slickers and sou westers, all of them had felt at least a little bit romantic. But
when they cleared the lee of the land and entered the seaway, and the boat
suddenly began to lurch, they grabbed the nearest sturdy things and thought
about their suppers, which by the time it got dark, several of them had lost.

Most of the crew now fell into that half-autistic state that the monotony of
storms at sea occasionally induces. You find a place to sit and getting a good
hold of it, you try not to move again. The boat rolls this way and you flex the
muscles around your stomach, then relax; she rolls that way and you flex
again. Just staying in one place is exercise. For a while your mind may rebel:

“Why did you come, idiot? You don’t have to be out here.” You may feel
remorse for having cursed some part of life on land. After a time, though,
phrases start falling from your memory—snatches of song or prayer or
nursery rhymes—and you repeat them silently. A little shot of spray in the
face, however, or an especially loud and dangerous-sounding thump from the
hull, usually breaks the trance and puts you back at sea again. You feel like a
lonely child. The ocean doesn’t care about you. It makes your boat feel tiny.
The oceans are great promoters of religion, or at least of humility—but not in
everyone.

In the glow of the running lights, most of the crew looked like refugees,
huddled, wearing blank faces. Among them, Tom West appeared as a thin
figure under a watch cap, in nearly constant motion. High spirits had
apparently possessed him from the moment they set sail, and the longer they
were out in the storm, the heavier the weather got, the livelier he grew. You
could see him grinning in the dark. West did all that the captain asked, so
cheerfully, unquestioningly and fast, that one might have thought the ghost of
an old-fashioned virtuous seaman had joined them. Only West never
confessed to a queasy stomach. When one of the others asked him if he felt
seasick too, he replied, in a completely serious voice, that he would not let
himself. A little later, he made his way down to the cabin, moving like a
veteran conductor in a rocking, rolling railroad car, and got himself a beer.

West was at the helm, the tiller in both hands, riding the waves; he was
standing under a swaying lantern in the cabin studying the chart, he was
nimbly climbing out onto the foredeck to wrestle in a jib and replace it with a
smaller one. And when the captain decided to make for shelter, very late that
night, at a little harbor with a passage into it that was twisty, narrow and full
of tide, it was West, standing up in the bow, who spotted each unlighted
channel marker and guided them safely in.

By dawn, the wind had moderated slightly and everyone felt better. They
went out and raised their spinnaker. West gazed up at the large billowing sail
and said, “The spinnaker looks like a win.” He said, “Hey, we’re haulin’ ass.”
There was something faintly ridiculous about his exclamations, but also
something childlike that made his companions smile. He was grinning most
of the day, a cockeyed little smile that collected in one corner of his mouth.
When the captain remarked worriedly that his boat had never gone so fast
before, West laughed. He made the sound mostly in his throat. It was a low

and even noise. Odd in itself and oddly provoked, the kind of laughter that
ghost stories inspire, it seemed to say, “Here’s something that’s not
ordinary.”

A snapshot taken of the cockpit in the afternoon shows West sitting in the
stern. The dark shadow of a day’s growth of beard reveals that he passed
adolescence some years ago, though just how many would be impossible to
say. In fact, he is just forty. He wears glasses with flesh-colored rims, and a
heavy gray sweater that must have given him long faithful service hangs
loosely on his frame. He looks as if he must smell of wool. He looks thin,
with a long narrow face that on a woman would be called horsey. A mane of
brown hair, swept back behind his ears, reaches almost to his collar. His face
is lifted, his lips pursed. He appears to be the person in command.

One of the crew would remember being alone with him on watch one
night. They were sailing under clear skies with a gentle breeze. Suddenly, at
the slackening of the tide, the wind fell away, some clouds rolled in, and then
just as suddenly, when the tide began to run, the sky cleared up and the
breeze returned. In a low and throaty voice, West made exclamations: “Did
you see that?” He made his low and spooky laugh. His companion was about
to say, “Well, I’ve seen this happen before.” The tone of West’s voice
prevented him, however. He thought it would be rude to describe this event
as ordinary. Besides, West was right, wasn’t he? It was strange and
wonderful the way the pieces of the weather sometimes played in concert. At
any rate, it was fun to think that they had just encountered a natural mystery,
and, somewhat surprised at himself, West’s companion suggested that events
like that made superstitions seem respectable. West gave his low laugh,
apparently signifying agreement.

The psychologist, meanwhile, was waiting for West to go to sleep. He had
not done so for more than a few hours altogether. By the third day, when they
were sailing in sunshine with a gentle breeze, the psychologist expected to
see signs of exhaustion appear in West. Instead, West put on his bathing suit
and took a long vigorous swim beside the boat.

Back at a restaurant near Portland before they’d gone out into the storm,
while they’d been sharing the meal that most of them soon regretted, West
had told them, “I build computers.” Although he spoke at some length about
certain extraordinary sounding, new computing systems, the others came
away uncertain about what role, if any, he had played in their construction.

They felt only that whatever he did for a living, it was probably interesting
and obviously important.

One time while West was manning the tiller, the psychologist asked him
how he had learned to sail. West didn’t answer. A little later on, thinking he
hadn’t heard the question, the psychologist inquired again.

“You already asked me that,” West snapped. After a moment’s silence, he
wet his lips and explained that he had taught himself mostly, as a boy.

On another occasion, just to make conversation, one of the crew asked
West what sort of computer he was building now. West made a face and
looked away, and muttered something about how that was work and this was
his vacation and he would rather not think about that.

The people who shared the journey remembered West. The following
winter, describing the nasty northeaster over dinner, the captain remarked,
“That fellow West is a good man in a storm.” The psychologist did not see
West again, but remained curious about him. “He didn’t sleep for four nights!
Four whole nights.” And if that trip had been his idea of a vacation, where,
the psychologist wanted to know, did he work?

1

HOW TO MAKE A LOT OF MONEY

FOR A TIME after the first pieces of Route 495 were laid down across central
Massachusetts, in the middle 1960s, the main hazard to drivers was deer.
About fifteen years later, although traffic went by in processions, stretches of
the highway’s banks still looked lonesome. Driving down 495, you passed
some modern buildings, but they quickly disappeared and then for a while
there would be little to see except the odd farmhouse and acres of trees. The
highway traverses some of the ghost country of rural Massachusetts. Like
Troy, this region contains evidence of successive sackings: in the pine and
hardwood forests, which now comprise two-thirds of the state, many cellar
holes and overgrown stone walls that farmers left behind when they went
west; riverside textile mills, still the largest buildings in many little towns,
but their windows broken now, their machinery crumbling to rust and the
business gone to Asia and down south. However, on many of the roads that
lead back behind the highway’s scenery stand not woods and relics, but
brand-new neighborhoods, apartment houses, and shopping centers. The
roads around them fill up with cars before nine and after five. They are going
to and from commercial buildings that wear on their doors and walls
descriptions of new enterprise. Digital Equipment, Data General—there on
the edge of the woods, those names seemed like prophecies to me, before I
realized that the new order they implied had arrived already.

A few miles north of the junction of Route 495 and the Massachusetts
Turnpike, off an access road, sits a two-story brick building, surrounded by
parking lots. A sign warns against leaving a car there without authority. The
building itself looks like a fort. It has narrow windows, an American flag on a
pole out front, a dish antenna on a latticed tower. Mounted on several corners
of the roofs, and slowly turning, are little TV cameras.

This is Building 14A/B—14B was fastened seamlessly to 14A. Some

employees call the place “Webo,” but most refer to it as “Westborough,” after
the name of the town inside whose borders the building happens to exist.
“Westborough” is worldwide headquarters of the Data General Corporation.
Driving up to the building one day with one of the company’s public relations
men, I asked, “Who was the architect?”

“We didn’t have one!” cried the beaming press agent.
Company engineers helped to design Westborough, and they made it

functional and cheap. One contractor who did some work for Data General
was quoted in Fortune as saying, “What they call tough auditing, we call
thievery.” However they accomplished it, Westborough cost only about
nineteen dollars a square foot at a time when the average commercial
building in Massachusetts was going for something like thirty-four dollars a
foot. But looks do matter here. The company designed Westborough not just
for the sake of thriftiness, but also to make plain to investors and financial
analysts that Data General really is a thrifty outfit. “There’s no reason in our
business to have an ostentatious display,” a company analyst for investor
relations explained. “In fact, it’s detrimental.”

The TV cameras on the roofs, the first defense against unscrupulous
competitors and other sorts of spies and thieves, must comfort those who
have a stake in what goes on inside. As for me, I imagined that somewhere in
the building men in uniforms were watching me arrive, and I felt discouraged
from walking on the grass.

The only door that opens for outsiders leads to the front lobby. A
receptionist asks you to sign a logbook, which inquires if you are an
American citizen, wants your license plate number, and so on. Still you
cannot pass the desk and enter the hallways beyond—not until the employee
you want to see comes out and gives you escort. When I inquired, the
cheerful young receptionist said that once in a great while some outsider
would try to break the rules and try to slip inside.

The lobby could belong to a motor inn. It has orange carpeting and some
chairs and a sofa upholstered in vinyl, on which salesmen and would-be
employees languish, awaiting appointments. Now and then, a visitor will
stand and gaze into a plastic case. It contains the bare bones of a story that
will feed the dreams of any ambitious businessman. THE FIRST NOVA, reads
a legend on the case. Inside sits a small computer, about the size of a suitcase,
with a cathode-ray tube—a thing like a television screen—beside it. A swatch

of prose on the back wall, inside the case, explains that this was the first
computer that Data General ever sold. But the animal in there isn’t stuffed;
the computer is functioning, lights on it softly blinking as it produces on the
screen beside it a series of graphs—ten years’ worth of annual reports, a
précis of Data General Corporation’s financial history.

Left to their own devices, the engineers who worked in the basement of
Building 14A/B could surely have produced a flashier display, but a visitor
from Wall Street who had never paid attention to this company before might
have felt faint before the thing. The TV screen was blue. The graphs, etched
in white, appeared in rotating sequence, and each one bore a name.
“Cumulative Computers Shipped Since Our Founding” started with 100 in
1969 and went right up to 70,700 in 1979. The image vanished. “Net Sales”
appeared, to show that revenues had ascended without a hitch from nothing in
1968 to $507.5 million in 1979. That graph went away and in its place came
one describing profit margins. These hardly varied. The profits just rolled in,
year after year, along a nearly straight line, at about 20 percent (before taxes)
of those burgeoning net sales.

Someone unaccustomed to reading financial reports might have missed
the full import of the numbers on the screen, the glee and madness in them.
But anyone could see that they started small and got big fast. Mechanically,
monotonously, the computer in the case was telling an old familiar story—the
international, materialistic fairy tale come true.

The first modern computers arrived in the late 1940s, and although many
more or less single-handed contributions fostered the technology, they did so
mainly in the shade of a familiar association in America among the military,
universities and corporations. On the commercial side, IBM quickly
established worldwide hegemony; it brought to computers the world’s best
sales force, all dressed in white shirts and blue suits. For some years the
computer industry consisted almost exclusively of IBM and several smaller
companies—“IBM and the seven dwarfs,” business writers liked to say. Then
in the 1960s IBM produced a family of new computers, called the 360 line. It
was a daring corporate undertaking. “We’re betting the company,” one IBM
executive remarked. Indeed, the project cost somewhat more than the
development of the atom bomb, but it paid off handsomely. It guaranteed for

a long time to come IBM’s continued preeminence in the making of
computers for profit. Meanwhile, though, new parts of the business were
growing up, and out from under IBM.

In the early days, computers inspired widespread awe and the popular
press dubbed them giant brains. In fact, the computer’s power resembled that
of a bulldozer; it did not harness subtlety, though subtlety went into its
design. It did mainly bookkeeping and math, by rote procedures, and it did
them far more quickly than they had ever been done before. But computers
were relatively scarce, and they were large and very expensive. Typically,
one big machine served an entire organization. Often it lay behind a plate
glass window, people in white gowns attending it, and those who wished to
use it did so through intermediaries. Users were like supplicants. The process
could be annoying.

Scientists and engineers, it seems, were the first to express a desire for a
relatively inexpensive computer that they could operate themselves. The
result was a machine called a minicomputer. In time, the demand for such a
machine turned out to be enormous. Probably IBM could not have controlled
this new market, the way it did the one for large computers. As it happened,
IBM ignored it, and so the field was left open for aspiring entrepreneurs—
often, in this case, young computer engineers who left corporate armies with
dreams of building corporate armies of their own.

For many years sociologists and others have written of a computer
revolution, impending or in progress. Some enthusiasts have declared that the
small inexpensive computer inaugurated a new phase of this upheaval, which
would make computers instruments of egalitarianism. By the late seventies,
practically every organization in America had come to rely upon computers,
and ordinary citizens were buying them for their homes. Within some
organizations small bands of professionals had exercised absolute authority
over computing, and the proliferation of small computers did weaken their
positions. But in the main, computers altered techniques and not intentions
and in many cases served to increase the power of executives on top and to
prop up venerable institutions. A more likely place to look for radical change
was inside the industry actually producing computers. Generally, that
industry grew very big and lively, largely because of a single invention.

Shortly after World War II, decades of investigation into the internal
workings of the solids yielded a new piece of electronic hardware called a

transistor (for its actual invention, three scientists at Bell Laboratories won
the Nobel Prize). Transistors, a family of devices, alter and control the flow
of electricity in circuits; one standard rough analogy compares their action to
that of faucets controlling the flow of water in pipes. Other devices then in
existence could do the same work, but transistors are superior. They are solid.
They have no cogs and wheels, no separate pieces to be soldered together; it
is as if they are stones performing useful work. They are durable, take almost
no time to start working, and don’t consume much power. Moreover, as
physicists and engineers discovered, they could be made very small, indeed
microscopic, and they could be produced cheaply in large quantities.

The second crucial stage in the development of the new electronics came
when techniques were developed to hook many transistors together into
complicated circuits—into little packets called integrated circuits, or chips
(imagine the wiring diagram of an office building, inscribed on the nail of
your little toe). The semiconductor industry, which is named for the class of
solids out of which transistors are made, grew up around these devices and
began producing chips in huge quantities. Chips made spaceships and pocket
calculators possible. They became the basic building blocks of TVs, radios,
stereos, watches, and they made computers ubiquitous and varied. They did
not eliminate the sizable, expensive computer; they made it possible for the
likes of IBM to produce machines of increased speed and capability and still
make handsome profits without raising prices much. At the same time, the
development of chips fostered an immense and rapid growth of other kinds of
computing machines.

After mainframes, as the big computers were known, came the cheaper
and less powerful minicomputers. Then the semiconductor firms contributed
the microprocessor, the central works of a computer executed on a chip. For a
while, the three classifications really did describe a company’s products and
define its markets, but then mainframers and microcomputer companies
started making minis and minicomputer companies added micros and things
that looked like mainframes to their product lines. Meanwhile, a host of
frankly imitative enterprises started making computers and gear for
computers that could be plugged right into systems built around the wares of
the big successful companies. These outfits went by the names of “plug
compatibles” and “third-party peripheral manufacturers”; those who lost
some business to them called them “knockoff companies.” Probably they

helped maintain competition in prices. Many “software” houses sprang up, to
write programs that would make all those computers actually do work. Many
customers, such as the Department of Defense, wanted to buy complete
systems, all put together and ready to run with the turn of a key; hence the
rise of companies known as original equipment manufacturers, or OEMs—
they’d buy gear from various companies and put it together in packages.
Some firms made computer systems for hospitals; some specialized in
graphics—computers that draw pictures—and others worked on making
robots. It became apparent that communications and computing served each
other so intimately that they might actually become the same thing; IBM
bought a share in a satellite, and that other nation-state, AT&T, the phone
company, started making machines that looked suspiciously like computers.
Conglomerates, of which Exxon was only the largest, seemed determined to
buy up every small computer firm they could. As for those who observed the
activity, they constituted an industry in themselves. Trade publications
flourished; they bore names such as Datamation, Electronic News, Byte,
Computermania. IBM, one executive of a mainframe company once said,
represented not competition but “the environment,” and on Wall Street and
elsewhere some people made a business solely out of attempting to predict
what the environment would do next.

I once asked a press agent for a computer company what was the reason
for all this enthusiasm. He held a hand before my face and rubbed his thumb
across his fingers. “Money,” he whispered solemnly. “There’s so goddamn
much money to be made.” Examples of spectacular success abounded. The
industry saw some classic dirty deals and some notable failures, too. RCA
and Xerox lost about a billion dollars apiece and GE about half a billion
making computers. It was a gold rush. IBM set up two main divisions, each
one representing the other’s main competition. Other companies did not have
to invent competitors and did somewhat more of their contending externally.
Some did sometimes use illicit tools. Currying favor, seeking big orders for
chips, some salesmen of semiconductors, for instance, were known for
whispering to one computer maker news about another computer maker’s
latest unannounced product. Firms fought over patents, marketing practices
and employees, and once in a while someone would get caught stealing
blueprints or other documents, and for these and other reasons computer
companies often went to court. IBM virtually resided there. Everyone sued

IBM, it seemed. The biggest suit, the Jarndyce v. Jarndyce of the industry,
involved the Justice Department’s attempt to break up IBM. Virtually an
entire large law firm was created to defend IBM in this case, which by 1980
had run ten years and had been in continuous trial for several.

Data General took its place in this bellicose land of opportunity in 1968,
as a “minicomputer company.” By the end of 1978 this increasingly
undescriptive term could in some senses be applied to about fifty companies.
Their principal but by no means their only business, the manufacture and sale
of small computers, had grown spectacularly—from about $150 million
worth of shipments in 1968, to about $3.5 billion worth by 1978—and it
would continue to grow, most interested parties believed, at the rate of about
30 percent a year. By 1978 Data General ranked third in sales of
minicomputers and stood among the powers in this segment of the industry.
The leader was Digital Equipment Corporation, or DEC, as it is usually
called. DEC produced some of the first minicomputers, back in the early
sixties. Data General was the son, emphatically the son, of DEC.

A chapter of DEC’s official history, a technical work that the company
published, describes the making of a computer called the PDP-8. DEC sent
this machine to market in 1965. It was a hit. It made DEC’s first fortune. The
PDP-8, says the official history, “established the concept of minicomputers,
leading the way to a multibillion dollar industry.” But the book doesn’t say
that Edson de Castro, then an engineer in his twenties, led the team that
designed the PDP-8. The technical history mentions de Castro only once,
briefly, and in another context. They expunged de Castro.

In 1968 de Castro and two other young engineers seceded from DEC.
Several completely different versions of their flight exist and have by now
acquired the impenetrable quality of myth. Did they quit because, after long
and heartfelt labor on a new design, they found that DEC’s management
would not build their new machine? DEC’s management did turn down a
new design of de Castro’s, and afterward, along with a man from another
company named Herb Richman, de Castro and the two other engineers from
Digital incorporated Data General and started building their own
minicomputer. But did they design this new machine after they seceded, or
had they done that job in secret, using DEC’s facilities, while still on DEC’s
payroll? One version of the story suggested the latter. More than ten years
later, DEC’s founder and president would tell reporters from Fortune, “What

they did was so bad we’re still upset about it.” But DEC never sued Data
General’s founders, and clearly there were other reasons why Digital might
have become upset. For within a year, de Castro and company had set up
shop in DEC’s own territory and had started raking in the loot.

They rented space in what had been a beauty parlor, in the former mill
town of Hudson, Massachusetts. Practically all that remains of that time is a
black-and-white photograph of this first headquarters. In the foreground stand
four young men with short hair, wearing white shirts and skinny ties and the
sort of plain black shoes that J. Edgar Hoover’s men favored. They are
engaged in what is obviously meant to look like routine conversation. The
linoleum floor, the metal furniture, evoke motor vehicle departments, and the
youths in the picture could be members of some junior chamber of
commerce, playing capitalists for a day. Not shown in this bemusing picture
is the shrewd and somewhat older lawyer from a large New York firm who
helped Data General’s founders raise their capital and who became a crucial
member of their team. What also doesn’t show is the fact that some of these
young men were already computer engineers of no mean repute—their age in
this case was no impediment, for computer engineers like athletes often
blossom early.

They started Data General at an auspicious time. In the late 1960s, the
period memorialized in John Brooks’s The Go-Go Years, venture capital
(among other things) abounded, and although they started out with only
$800,000, more lay in reserve. They also entered a good territory for
fledglings. They could not have dreamed of moving in on IBM’s markets
without truly vast amounts of capital. But the people who bought
minicomputers—engineers, scientists, and, mainly, purchasing agents of
OEMs—understood the machines. A new manufacturer could reach them
through relatively inexpensive ads in the trade journals, and didn’t need to
build a service organization right away, since these customers could take care
of themselves. These were also the sorts of customers who could be expected
to embrace a newcomer, if the price was right; they’d prefer a bargain to a
brand name.

But around the time when Data General established itself in the beauty
parlor, other entrepreneurs were starting up minicomputer companies at the
rate of about one every three days. Only a few of those other new outfits
survived the decade, whereas Data General, before it had exhausted its first

and fairly modest dose of capital, achieved and never fell from that state of
grace, a positive cash flow. Why?

The company’s first machine, the NOVA, had a simple elegance about it
that computer engineers I’ve talked to consider admirable, for its time. It had
features that DEC’s comparable offering didn’t share, and it incorporated the
latest, though not fully proven, advances in chips. Data General could build
the NOVA very cheaply. Such an important advantage can depend, in
computers, on small things. In the case of the NOVA, the especially large
size of the printed-circuit boards—the plates on which the chips are laid
down—made a crucial difference. For several reasons, large boards tend to
reduce the amount of hardware in a computer. Data General used boards
much larger than the ones that DEC was using. Speaking of this difference
and of other less important ones, one engineer remarked, “The NOVA was a
triumph of packaging.”

Good machines don’t guarantee success, though, as RCA and Xerox and
others had discovered. Herb Richman, who had helped to found Data
General, said, “We did everything well.” Obviously, they did not manage
every side of their business better than everyone else, but these young men
(all equipped with large egos, as one who was around them at this time
remarked) somehow managed to realize that they had to attend with equal
care to all sides of their operation—to the selling of their machine as well as
to its design, for instance. That may seem an elementary rule for making
money in a business, but it is one that is easier to state than to obey. Some
notion of how shrewd they could be is perhaps revealed in the fact that they
never tried to hoard a majority of the stock, but used it instead as a tool for
growth. Many young entrepreneurs, confusing ownership with control, can’t
bring themselves to do this.

When they chose their lawyer, who would deal with the financial
community for them, they insisted that he invest some of his own money in
their company. “We don’t want you running away if we get in trouble. We
want you there protecting your own money,” Richman remembered saying.
Such an arrangement, though not illegal, might raise some eyebrows in some
corners of the Bar Association. But the lawyer said, again according to
Richman, “That’s the first time anyone made an intelligent proposition to
me.” Richman also remembered that before they entered into negotiations
over their second public offering of stock, after the company had been

making money for a while and the stock they’d already issued had done very
well indeed, their lawyer insisted that each of the founders sell some of their
holdings in the company and each “take down a million bucks.” This so that
they could negotiate without the dread of losing everything (“Having to go
back to your father’s gas station,” Richman called that nightmare). As for the
name of the theory behind selling enough stock to become millionaires,
Richman told me, “I don’t know how you put it in the vernacular. We called
it the Fuck You Theory.”

In the computer business, your market can be your fate. Although by the
late 1970s it was hard to define a company’s place in the industry by the sorts
of machines that it made, certain broad historic distinctions in ways of doing
business still divided a large part of the industry into three segments. The
differences showed up in the nature of a company’s expenditures. IBM and
other mainframe companies spent more money selling their products and
serving their customers than they did in actually building their machines.
They sold their computers to people who were actually going to use them, not
to middlemen, and this market required good manners. Microcomputer
companies sold equipment as if it were corn, in large quantities; they spent
most of their money making things and competed not by being polite but by
being aggressive. Minicomputer companies split the differences more or less;
they sold some machines and service to actual users, but spent most of their
money on hardware and did a big business by selling machines in quantity to
OEMs.

From these distinctions, others hung. A seasoned executive in marketing
explained, “With micros it’s even more competitive, but historically the
world of minicomputers is very rough-and-tumble. IBM would say, ‘You got
a problem, Mr. Customer? A team of four will be there in an hour.’ Implicitly
a Data General would say to its customers, ‘You have to look out for
yourselves.’ The sophisticated customer, particularly the OEM who buys a
lot of computers and looks for discounts, not service, goes for minis. They’re
capable of living in a rough-and-tumble world. And I’m not sure that IBM,
with its organization, can compete in the traditional minicomputer market.
It’s like putting a goldfish in a bowl with a piranha.”

So you could say that Data General entered a territory that asked for a
certain brashness. And you could also say that life in this territory became
less decorous than it had been, when Data General came along. They set out

to get noticed, first of all.
In the lobby at Westborough hangs a copy of the first advertisement that

Data General ever ran. It consists of just one page. On one side of the page is
a grainy photograph of a man’s face. This person looks about to do
something very mean. On the other side of the ad, he speaks: “I’m Ed de
Castro, president of Data General Corporation. Seven months ago we started
the richest small computer company in history. This month we’re announcing
our first product: the best small computer in the world.” The message goes on
for a while and winds up as follows:

Because if you’re going to make a small inexpensive computer you
have to sell a lot of them to make a lot of money. And we intend to
make a lot of money.

This ad’s chief architect, a man named Allen Kluchman, who was the
company’s first director of marketing, told me with a smile, “That ad was
independent of any aspect of Mr. de Castro’s personality that I knew about at
that time. He’s the shyest guy I know. He’s essentially a pretty humble,
private guy.”

The ad achieved a certain local fame. It said what many others
presumably were thinking, but what none of them felt they should say
publicly. For some years thereafter, most of Data General’s advertisements
contained something slightly brazen. One of the best-known ads wasn’t
published—some people in the company were by then apparently having
second thoughts about the firm’s image. But a copy of this unpublished ad
hangs in de Castro’s office. Over the Data General logo, on a field of white
and blue, it reads:

They Say IBM’s Entry Into Minicomputers Will Legitimize The Market.
The Bastards Say, Welcome.

Before Data General unveiled the NOVA in 1969—at the industry’s
yearly fair, the National Computer Conference—the marketeer Kluchman

talked a trade magazine into putting a picture of the NOVA on its cover.
They rented billboards on the road from the airport to the conference and put
a picture of the NOVA on them; at the hotel where most of the people
attending the conference stayed, they talked the management into having
bellboys distribute free copies of the Wall Street Journal with Data General’s
advertising flyer inside; at the show itself, they raised the placard bearing
their company’s name higher than any other. When it came to pricing their
machine, they announced extraordinary discounts for customers who bought
machines in quantity. Never mind that customers had to buy a virtual
warehouse of NOVAs to get the truly big discount. Data General had brought
a new ferocity, a bit of Forty-second Street, to the pricing of minicomputers.

“DEC owned 85 percent of the business and there was no strong number
two. We had to distinguish ourselves from DEC,” Kluchman remembered.
“DEC was known as a bland entity. Data General was gonna be unbland,
aggressive, hustling, offering you more for your money…. We spread the
idea that Data General’s salesmen were more aggressive than DEC’s, and
they were, because ours worked on commissions and theirs worked on
salaries. But I exaggerated the aggressiveness.”

According to Kluchman, DEC actually gave them some help in setting up
“the Hertz-Avis thing.” DEC’s management, he said, ordered their salesmen
to warn their customers against Data General. “It was great! Because their
customers hadn’t heard about us.” Kluchman imagined DEC’s salesmen
telling DEC’s customers that a dangerous new company was on the prowl,
and DEC’s customers responding to this news by saying, “Where is this Data
General, so we can be sure to avoid them? What’s Data General’s phone
number, so we’ll be sure not to call it?” Kluchman laughed. “The calls just
rolled in. DEC’s customers would say, ‘We hear you’re bad guys. You must
be doing something we oughta know about.’ ”

And thinking back to those first heady days, when nearly every little
strategy seemed to pay off, and the first millions started coming in,
Kluchman said, “It was probably more fun than I or anybody else has ever
had in business. It was great ego satisfaction. It was just a pure gas.”

At the end of fiscal 1978, after just ten years of existence, Data General’s
name appeared on the list of the nation’s five hundred largest industrial

corporations—in that band of giants known as the Fortune 500. It stood in
five-hundredth place in total revenues, but much higher in respect to the
various indices of profit, and for a while climbed steadily higher on the list.
Surely by 1980 such a record entitled Data General to respectability. But
some trade journalists still looked askance at the company; one told me Data
General was widely known among his colleagues as “the Darth Vader of the
computer industry.” Investors still seemed jittery about Data General’s stock.
An article published in Fortune in 1979 had labeled Data General “the
upstarts,” while calling DEC “the gentlemen.” The memory of that article,
particularly the part that made it sound as if Data General routinely cheated
its customers, still rankled Herb Richman.

Building 14A/B is essentially divided into an upstairs and a downstairs,
and in one corner of the upstairs the corporate officers reside. A wall of glass
separates them from the rest of the company. There is no mahogany here. If
there is ostentation in the bosses’ quarters, it is ostentation in reverse. The
table in their conference room, it was proudly said, was the same that they
had used when the company was small. Richman’s office was comparatively
plush. But saying, “We consider ourselves the Robert Hall of the computer
industry,” Richman pointed out that he had paid for all his furnishings
himself and that what looked like paneling on his walls was really just
wallpaper.

Among the founders of the company, only de Castro—the much-talked-
about president—and Richman remained engaged in daily operations.
Richman had come up through the industry in sales—a supersalesman, some
called him—and he had created and run Data General’s sales force, which
was known if not notorious for its aggressiveness. Curly-haired, trim and in
his forties, Richman wore a nicely tailored denim jacket and no tie. “I’m one
of the few guys that money made a nice guy out of,” he said. “Before, I was
just driven, clawing…. Success has made me more rational and
introspective.” He remarked that not long ago he had been playing tennis
with a man who had seemed to him just an ordinary fellow, but then he had
found out that the man was actually president of an oil company. “And it was
one of the largest oil companies in the world, and I was just in awe of him,”
said Richman. He added, softly, “And yet I bet my net worth greatly
exceeded his.”

The stock that Richman himself owned in Data General was worth about

$13 million then, but, he seemed to say, he was unhappy with the way certain
organs of the press depicted his company’s achievements. They were,
Richman believed, too often depicted as “ruffians,” not as merely rough,
which they were proud to be. “We agree that a lot of things we’ve done
around here are wild,” he said. “But we can’t understand why we’re tabloid,
instead of the New York Times.”

Some part of Data General’s reputation was easy to explain. The company
had promoted it themselves, and maybe it had gotten a little out of hand.
Richman suggested, “We’ve done so much so well for so long that everyone
seems to think we have to be doing something illegal.” A good point, but not
a full accounting.

Some years back, in the early seventies, a company called Keronix
accused Data General’s officers of arranging the burning of a factory.
Keronix had been making computers that performed almost identically to
Data General machines. The theory was that Data General had taken a
shortcut in attempting to get rid of this competitor. In time, the courts found
no basis for those charges and dismissed them. Indeed, it seemed
preposterous to think that the suddenly wealthy executives of Data General
would risk everything, including jail, and resort to arson, just to drive away
what was, after all, a small competitor. But Wall Street didn’t see it that way,
apparently. When Keronix made its accusation, Data General’s stock
plummeted; there was such a rush to unload it that the New York Exchange
had to suspend trading in it for a while. More peculiar was the fact that many
years later, some veteran employees, fairly far down in the hierarchy, would
say privately that they believed someone connected with the company had
something to do with that fire. Not the officers, but some renegade within the
organization. They had no basis for saying so, no piece of long-hidden
evidence. It seemed to me that this was something that they wanted to
believe.

I got this feeling more than once. Turning down the road to Building
14A/B one day, a veteran engineer pointed out the sign that warned against
unauthorized parking. “The first sign you see says Don’t,” he remarked. He
imagined another sign by the road; it would say: Use of Excessive Force Has
Been Approved. The engineer laughed and laughed at the thought.

In a land of tough and ready companies, theirs, some of Data General’s
employees seemed to want to think, was the toughest and the readiest around.

Certainly Data General’s reputation had other underpinnings besides
advertisements and imagination. In an industry where sharp marketing
practices were common, Data General’s were as sharp as any, and by the late
1970s competitors were challenging some of them in federal court. To the
contention, leveled in Fortune, that Data General played especially rough
with its customers, it was only fair to add that many of Data General’s
customers knew very well what sort of market they were in, and moreover, it
was clear that the company could not have survived if most of its customers
had not felt at least fairly satisfied. But Data General was litigious, toward
customers as well as others. “Sure,” said Richman, “if people don’t pay us or
breach our contract, we litigate ’em.” They did so at least in part to assure
Wall Street that they weren’t the sort of company that would accumulate a
crippling number of bad debts.

The salient feature of Data General, however—what that sharp-eyed,
astonished visitor from Wall Street would have pondered—was its growth.
This was indeed the industry’s salient characteristic. In the main, computer
companies that were not dying were growing; they had to do so just to stay
alive, it seemed. But no company whose primary business was making
computers had grown more rapidly than Data General. Bursts of growth were
not uncommon, but Data General had been bursting for a decade, and what’s
more, it had been maintaining the highest profit margins in the industry next
to IBM’s. All this would have impressed the analyst from Wall Street, of
course, but would also have given him pause.

Building 14A/B and its sparse furnishings, the facts that Data General
paid its stockholders no dividends and that its top managers dispensed to
themselves and other officers exceptionally small salaries, meting out
rewards in the form of stock instead—all were signs of a common purpose.
The company had displayed extravagance when it came to financing its
tendency to go to court. Otherwise, the management seemed bent on saving
all their cash to feed the hungry beast of growth. And, of course, the more
this beast gets fed, the bigger it becomes, the more it wants to eat. It is one
thing for a company with revenues of a million dollars a year to grow 30 or
40 percent in a year and quite another for a half-a-billion-dollar company to
pull off the same trick.

Analysts on Wall Street sometimes become boosters of the companies
they follow. Looking for an opinion that was certain to be disinterested, I

asked an old friend, a veteran analyst of securities, to take a look at Data
General’s numbers. He had the advantage of never having followed the
company before, and in return for anonymity he agreed to my proposal. A
couple of weeks later, he called me back. It seemed to him that Data General
was bent on continuing to grow at 30 to 40 percent a year. He pointed out that
this meant large growth in everything—in the need for capital, new buildings,
new employees. Between 1974 and 1978, for instance, Data General had
hired about 7,000 new employees, roughly tripling its numbers; in one year
alone the company had increased its ranks by 71 percent. The analyst
imagined the difficulties of finding that many qualified people so quickly.
And what must it be like, he asked, to work at a place like that? You’d come
to work some morning and suddenly find yourself in charge of a dozen new
people, or suddenly beneath a new boss to whom you would have to prove
yourself all over again. “That sort of growth puts a strain on everything,” the
analyst concluded. “It’s gonna be intriguing to see if they get caught.” He
thanked me for putting him onto such a marvelous entertainment.

Where did the risks lie? Where could a company go badly wrong? In
many cases, a small and daily growing computer company did not fall on
hard times because people suddenly stopped wanting to buy its products. On
the contrary, a company was more likely to asphyxiate on its own success.
Demand for its products would be soaring, and the owners would be drawing
up optimistic five-year plans, when all of a sudden something would go
wrong with their system of production. They wouldn’t be able to produce the
machines that they had promised to deliver. Lawsuits might follow. At the
least, expensive parts would sit in inventory, revenues would fall, customers
would go elsewhere or out of business themselves. Data General got one leg
caught in this trap back around 1973. Six years later, a middle-level
executive, sitting in an office upstairs at headquarters, remembered that time:
“We were missing our commitments to customers. We just grossly fucked
over our customers. We actually put some entrepreneurs out of business and I
think some of them may have lost their houses. But we recovered from our
shipment problems and never repeated them.”

Another way of fouling up had less to do with a company’s own growth
than with the growth occurring all around it. From observers of the industry
came such comments as: “Things change fast in the computer business. A
year is a hell of a long time. It’s like a year in a dog’s life.” In every segment

of the industry, companies announced small new products for sale every day.
Companies brought out new lines of computers, much more powerful than
the ones they replaced, only every few years or so; but considering all the
work that went into them and the fact that they required a redirection of effort
throughout a company, the pace at which these major announcements came
was very rapid too. Conventional wisdom held that if a company fell very far
behind its competitors in producing the latest sorts of machines, it would
have a hard time catching up. And failure to stay abreast could have serious
consequences, because major new computers played crucial roles in the other
business of the companies; they helped them sell all their little products and,
often, their older types of machines.

At some companies the task of guarding against this sort of crisis fell
mainly to engineers, working below decks, as it were. Executives might make
the final decisions about what would be produced, but engineers would
provide most of the ideas for new products. After all, engineers were the
people who really knew the state of the art and who were therefore best
equipped to prophesy changes in it. At Data General, an engineer could play
such an important role. It was there for the taking. The president, de Castro,
liked “self-starters,” it was said. Initiative was welcomed at Data General,
and in the late seventies it appeared that the company had need of some
initiative from its engineers. For Data General was in a bind. The firm had
fallen behind the competition: it hadn’t yet produced the latest big thing in
minicomputers.

Early in 1979 the businessman who told me about Data General’s
problems and recovery back in ’73 hit upon a heroic metaphor for success in
the computer business. “The major thing,” he said, “is avoiding the big
mistake. It’s like downhill ski racing: Can you stay right on that edge beside
disaster? At Data General we keep coming up with these things that are
basically acts of recovery. What Tom West and his people are doing is a great
act of recovery.”

2

THE WARS

TOM WEST went to work these days in freshly laundered blue jeans or pressed
khakis, in leather moccasins and in solid-colored long-sleeved shirts, with the
sleeves rolled up in precise folds, like the pages of a letter, well above his
bony elbows. He expostulated with his hands. When dismissing someone or
some idea or both, he made a fist and then exploded it, fingers splaying wide.
The gesture was well known to the engineers who worked for him. Long
index fingers inserted under either side of the bridge of his glasses signified
thought, and accompanied by a long “Ummmmmmmmh” warned that some
emphatic statement was near. He kept his car and his office as neat as the
folds in his sleeves. He was decisive, and in his manner, exact. For all of that,
he was vague. “When I first went to work, he was my boss,” an engineer said
of West, “and it was amazing! Half the time I couldn’t figure out what he was
saying.” He was not always this way, said one of his oldest colleagues, but
sometimes you got the feeling that West expected you to be on his secret
wavelength, and if you weren’t he’d be disappointed in you. If you weren’t,
that was your problem. He didn’t have time to explain.

Seen at the wheel of his sporty red Saab, driving to work down 495, West
made a picture of impatience. His jaw was set, he had a forward lean.
Sometimes he briefly wore a mysterious smile. He was a man on a mission.

Into the world of the minicomputer a new thing had been born, a class of
computer known as a 32-bit supermini. West said, with characteristic
enthusiasm: “Everyone thinks they want one now. It’s an emotional issue. In
fact, it’s kind of a fire storm.” As for the present state of affairs, sometimes
he called it “a disaster.” Sometimes he would say, “We’re gonna get
schmeared if we don’t react to VAX.”

A number of Data General’s rivals had produced 32-bit superminis, and
the most important from West’s point of view was the computer that DEC

had recently sent to market, a machine called the VAX 11/780. Data General,
meanwhile, had not yet produced a computer of this class. Many people,
including West, believed that they must do so, and in fairly short order. Partly
it was a matter of keeping up appearances: customers get married to their
computer companies in many different ways and they don’t usually want to
get or stay married to a company that has fallen behind the state of the art.
Besides, you had to grab a piece of the new market for the 32-bit supermini
because that market was huge and growing fast; most observers agreed that it
would be worth several billion dollars by the middle 1980s. You did not have
to be the first company to produce the new kind of machine; sometimes, in
fact, it was better not to be the first. But you had to produce yours before the
new market really opened up and customers had made other marriages. For
once they are lost, both old and prospective customers are often gone for
good.

It had been painful for West and for a number of engineers working with
him at Westborough to watch DEC’s VAX go to market, to hear it described
as “a breakthrough,” and not have a brand-new machine of their own to show
off. It had been painful for them to read in the trade press of the VAX’s
growing success; VAX was beginning to look like one of those best-sellers
that come along only once in a while. But by the fall of 1978 West had drawn
around him a team of enthusiastic engineers and they were finally working on
their own supermini, which they had nicknamed Eagle. A new computer,
especially one of this class, does not get built in a month. Often it takes years
to bring one to life. But it wasn’t too late, West was saying. Not if they could
build this computer in the record time of something like a year. This was at
last “the right machine.” This was “the answer to VAX.” At times West
fancied that this computer would become the source of Data General’s
continued ascent in the Fortune 500. “This is the second billion,” he said. His
doubts he did not share widely.

Secretly, West felt afraid of VAX. DEC had published a great deal of
technical literature describing VAX, and West had read all of it. Nothing in
this material had made him feel that his team’s approach was inferior to
DEC’s. In some engineers, however, reading does not constitute knowing.
For them, touch is the first of the senses. And so, one holiday morning in
1978, when his team was already well launched on the building of its own
machine, West went away from Westborough to have a look at a VAX for

himself.
He traveled to a city, which was located, he would only say, somewhere

in America. He walked into a building, just as though he belonged there,
went down a hallway, and let himself quietly into a windowless room. The
floor was torn up; a sort of trench filled with fat power cables traversed it.
Along the far wall, at the end of the trench, stood a brand-new example of
DEC’s VAX, enclosed in several large cabinets that vaguely resembled
refrigerators. But to West’s surprise, one of the cabinets stood open and a
man with tools was standing in front of it. A technician from DEC, still
installing the machine, West figured.

Although West’s purposes were not illegal, they were sly, and he had no
intention of embarrassing the friend who had given him permission to visit
this room. If the technician had asked West to identify himself, West would
not have lied, and he wouldn’t have answered the question either. But the
moment went by. The technician didn’t inquire. West stood around and
watched him work, and in a little while, the technician packed up his tools
and left.

Then West closed the door, went back across the room to the computer,
which was now all but fully assembled, and began to take it apart.

The cabinet he opened contained the VAX’s Central Processing Unit,
known as the CPU—the heart of the physical machine. In the VAX, twenty-
seven printed-circuit boards, arranged like books on a shelf, made up this
thing of things. West spent most of the rest of the morning pulling out boards;
he’d examine each one, then put it back.

Across the surfaces of a typical computer’s printed-circuit boards stand
columns of small rectangular boxes, with metal legs descending from their
sides. They might be some odd strain of caterpillar bred for mathematical
ability. In fact, each of these boxes holds inside it another box, as it were—
the intricate integrated circuitry known as a chip. Etched into the boards,
among the housings of the chips, run many silvery bands; they make patterns
like the tracks in large railroad yards.

Some boards are colorful and most finished ones please the eye. A
computer’s boards seem to show order triumphing in complexity. They look
as if they make sense, but not in the way the moving parts of an engine make
sense. The form on the surface of a board does not imply its function. It’s
difficult but possible to get inside the littlest boxes inside the boxes that

constitute a modern computer, and bringing back the details, to create a
functionally equivalent copy of the machine. Reverse engineering is the name
for that art.

West called it “knockoff copy work.” He had a cleaner, simpler purpose.
He examined the outside of the VAX’s chips—some had numbers on them
that were like familiar names to him—and he counted the various types and
the quantities of each. Later on, he looked at other pieces of the machine. He
identified them generally too. He did more counting. And when he was all
done, he added everything together and decided that it probably cost $22,500
to manufacture the essential hardware that comprised a VAX (which DEC
was selling for somewhat more than $100,000). He left the machine exactly
as he had found it.

“I’d been living in fear of VAX for a year,” West said afterward, while
driving along 495 one evening. “I wasn’t really into G-Two. VAX was in the
public domain and I wanted to see how bad the damage was. I think I got a
high when I looked at it and saw how complex and expensive it was. It made
me feel good about some of the decisions we’ve made.”

Looking into the VAX, West had imagined he saw a diagram of DEC’s
corporate organization. He felt that VAX was too complicated. He did not
like, for instance, the system by which various parts of the machine
communicated with each other; for his taste, there was too much protocol
involved. He decided that VAX embodied flaws in DEC’s corporate
organization. The machine expressed that phenomenally successful
company’s cautious, bureaucratic style. Was this true? West said it didn’t
matter, it was a useful theory. Then he rephrased his opinions. “With VAX,
DEC was trying to minimize the risk,” he said, as he swerved around another
car. Grinning, he went on: “We’re trying to maximize the win, and make
Eagle go as fast as a raped ape.”

Some of the engineers closest to West suspected that if he weren’t given a
crisis to deal with once in a while, he would create one. To them he seemed
so confident and happy in an emergency. But as for this big crisis in the little
world of Westborough engineering, although West had made it his own, no
one could say he had invented it.

Why had Data General failed to produce a rival to VAX? When trade

journalists asked this question, Data General put on a bold face of course, and
suggested in essence that all was proceeding according to plan. In fact, years
before the appearance of VAX, Data General engineers had foreseen the
advent of such machines. For about five years they had been trying to
produce one of their own. But there had been problems. They had made some
false starts, and the engineers involved had been arguing over who was going
to produce this new machine and what it would be.

Some computer engineers harbor strong feelings toward their new
designs, like Cossacks toward their horses. Carl Alsing, a veteran engineer
and one of West’s cadre, told the fable of an engineer, who, upon being
informed that his plans for a new machine had been scrapped by the
managers of his company, got a gun and murdered a colleague whose design
had been accepted. Alsing said he thought that such a murder really happened
but that a woman was probably involved—yet it came, he said, to much the
same thing.

The history of what West and some of his associates called their “wars”
began in the mid-seventies. Data General had gotten over its manufacturing
problems; the fuss over the Keronix affair had long since died down and the
company had been growing apace. They had followed up on the
instantaneous success of their first CPU, the NOVA, by producing a whole
line of compatible NOVAs, and while those computers kept selling and
selling, they had created another and generally more powerful line of
machines, called the Eclipse. Like the NOVA, it was a hit. The Eclipse line
was just beginning to grow, however, when the leader of the Eclipse Group
began to leave his team. He went away to invent the next kind of Data
General computer. As it developed, this became a grand project. Among
other things, it would solve one of the important technical questions then on
the horizon. This problem lay in the question of how best to enlarge the
minicomputer’s “logical-address space.” This was the problem that
superminis like VAX would address, by achieving what one wag called
“thirty-two-bit-hood.”

Computers, it is often said, manipulate symbols. They don’t deal with
numbers directly, but with symbols that can represent not only numbers but
also words and pictures. Inside the circuits of the digital computer these
symbols exist in electrical form, and there are just two basic symbols—a high
voltage and a low voltage. Clearly, this is a marvelous kind of symbolism for

a machine; the circuits don’t have to distinguish between nine different
shades of gray but only between black and white, or, in electrical terms,
between high and low voltages.

Computer engineers call a single high or low voltage a bit, and it
symbolizes one piece of information. One bit can’t symbolize much; it has
only two possible states, so it can, for instance, be used to stand for only two
integers. Put many bits in a row, however, and the number of things that can
be represented increases exponentially. By way of analogy, think of
telephone numbers. Using only four digits, the phone company could make
up enough unique numbers to give one to everybody in a small town. But
what if the company wants to give everyone in a large region a unique phone
number? By using seven instead of four digits, Ma Bell can generate a vast
array of unique numbers, enough so that everyone in the New York
metropolitan area or in the state of Montana can have one of his own.

Inside certain crucial parts of a typical modern computer, the bits—the
electrical symbols—are handled in packets. Like phone numbers the packets
are of a standard size. IBM’s machines have traditionally handled
information in packages 32 bits long. Data General’s NOVA and most
minicomputers after it, including the Eclipses, deal with packages only 16
bits long. The distinction is inconsequential in theory, since any computer is
hypothetically capable of doing what any other computer may do. But the
ease and speed with which different computers can be made to perform the
same piece of work vary widely, and in general a machine that handles
symbols in chunks of 32 bits runs faster, and for some purposes—usually
large ones—it is easier to program than a machine that handles only 16 bits at
a time.

In this case, the main issue was the computer’s storage system. Here, in
packages of symbolic bits, are kept both information for the computer to
manipulate and also many of the instructions that tell the computer what to do
with that data. The situation resembles that of a region’s telephone system;
phones are of no use unless they are distinct one from the other, and an item
in a computer’s storage system is of no use unless it can easily be found. And
the general solution resembles the phone company’s; each compartment in
the computer’s storage has its own “phone number,” its own unique symbol,
known as an address. A 16-bit machine can directly generate symbolic
addresses only 16 bits long, which means that it can hand out to storage

compartments only about 65,000 unique addresses. A true 32-bit machine,
however, can directly address some 4.3 billion storage compartments.

Some of Data General’s old customers and many potential new ones
needed, or soon would, the large “logical-address space” of a 32-bit machine.
Although other customers had no such needs as yet, a general feeling held
that 32-bithood would become a de facto standard in the industry. You had to
produce a 32-bit machine.

It was 1976. By degrees West had taken command of the Eclipse Group.
He and his small team were, as he put it, pounding out new 16-bit Eclipses.
Meanwhile, the group’s former leader and another team of engineers were
working on the monumental new machine, which would solve the logical-
address problem, among others. The monumental machine had taken on the
code name FHP, an abbreviation for “the Fountainhead Project.” The team
designing FHP repaired to a suite in the Fountainhead Apartments—a local
edifice that lends a touch of Miami Beach to the town of Westborough—in
order to pursue their work. West’s Eclipse Group carried on at headquarters,
extending the successful line of Eclipses. And all might have proceeded this
way, in relative harmony, but for politics.

Data General had built a new research facility in a place called Research
Triangle Park, in North Carolina, a state that had made itself comely to
industry, partly by keeping taxes low. While lauding the government of North
Carolina, Data General’s spokesmen rather bitterly denounced
Massachusetts, where taxes of all sorts run high. Edson de Castro himself
joined in the criticism. One company spokesman went so far as to lament the
fact that Data General had chosen to grow up in the Bay State. In reporting
such comments, none of the Boston papers bothered to point out that the
many universities and institutes of technology, existing tax free in
Massachusetts, had produced much of the technology and many of the
technologists that had made a Data General possible in the first place. But
Data General’s front office wasn’t complaining without reason. In
Massachusetts, as elsewhere, 1976 happened to be an election year, and the
company was throwing its weight against several propositions on the ballot
that threatened to increase both Data General’s operating expenses and the
personal income taxes of its better-paid employees.

As it turned out, most of the company’s favored causes won. No doubt
Data General’s campaign had an influence. The opening of the facility in

Research Triangle Park, North Carolina, and the political campaign, however,
had some unfortunate side effects on some of the company’s engineers.

For one thing, word had come down that the FHP project was being
transferred to North Carolina. Some of the engineers who had been working
on that grand new machine refused to pack up their families and go south. At
least some of them felt robbed. “You gotta understand,” said West later.
“FHP was the one thing in the world they wanted to do most, the biggest-
thing-the-world’s-ever-seen kind of thing. Somebody told those guys that
they would have seventy-two uninterrupted hours with the girl of their
dreams. The thing they most wanted to do was dangled before them and then
pulled away. And some people were pissed.”

Then there was the newspaper story. One morning, after FHP’s departure
had been announced, a number of the engineers at Westborough, who felt of
course that they were good, productive, “can-do” engineers, picked up the
Boston Globe and saw in it an article about themselves. It read in part:

Speaking to the Boston Security Analysts Society, de Castro said his
company, the second largest minicomputer producer in the world, was
finding it “a great deal easier to staff [its research-and-development
center] in North Carolina. People are more willing to move into that
area than Boston.”

… In addition to this 20 percent cost-of-living difference, which is a
combination of taxes, insurance, housing, food and other costs, de
Castro said the Research Triangle Park area has “a different feel” than
the research facility the company maintains in Westborough. “The
ambition level is different…. There is a can-do attitude and that
environment is contagious.”

West remembered the aftermath, laughing low and shaking his head: “De
Castro called us all together and in his inimitable fashion totally confused
everyone. He said that the press distorts things and I hope you know that even
if I believed that quote I wouldn’t say it. Then he gave us the march to
victory speech and left.” West added, “Morale hit an all-time low at
Westborough.”

Various accounts of how matters stood among the engineers there suggest
that many believed Westborough’s days as an interesting place to work were
about over. Sure, said West, people there could continue to build NOVAs and
Eclipses. “But what fun is that?” Some of those who were going south with
FHP boasted that they were going to the place where the action would be.
And indeed it looked as though the important new machines, the sorts of
projects that a significant number of Westborough’s engineers wanted to
work on, would thereafter be pursued in North Carolina.

Some of the engineers who had chosen New England over FHP fell under
West’s command, more or less. And the leader of the FHP project suggested
that those staying behind make a small machine that would solve the 32-bit,
logical-address problem and would at the same time exhibit a trait called
“software compatibility.”

Some of those who stayed behind felt determined to build something
elegant. They designed a computer equipped with something called a mode
bit. They planned to build, in essence, two different machines in one box.
One would be a regular old 16-bit Eclipse, but flip the switch, so to speak,
and the machine would turn into its alter ego, into a hot rod—a fast, good-
looking 32-bit computer. West felt that the designers were out to “kill North
Carolina,” and there wasn’t much question but that he was right, at least in
some cases. Those who worked on the design called this new machine EGO.
The individual initials respectively stood one step back in the alphabet from
the initials FHP, just as in the movie 2001 the name of the computer that goes
berserk—HAL—plays against the initials IBM. The name, EGO, also meant
what it said.

The people working on EGO, nominally working for West but in fact
amenable then to no one’s control, truly labored. They worked nights. They
worked weekends. They argued hotly with each other. “It was the most
incredible, soaring experience of my life,” said one of them later. And they
worked with astonishing speed. Within two months they had a fairly
complete specification. Then they took it to de Castro.

To a disinterested observer it might have seemed obvious that Data
General wasn’t going to field both EGO and North Carolina’s machine. The
costs of supporting the two radically new CPUs would be prohibitive. Data
General could sensibly afford only one major new machine, and Data
General is almost always sensible about money. According to West, and

others, de Castro told him and his troops to work out their differences with
North Carolina. They didn’t. To some of the engineers who worked on EGO,
what ensued was a “war,” and the first open battle, which was fought at a
Howard Johnson’s motor inn down south, was “the big shoot-out at HoJo’s.”
Carl Alsing, who was not a participant but an interested observer, said: “I
imagine the great EGO wars as a pen-and-ink drawing. Snarling engineers are
shown hurling complexities at each other.”

Which processor was better? Which deserved to receive the support and
resources of the company? Those were the stakes.

Fights like these often take place inside computer companies. So it is said.
Here the winner was foreordained. When it came to rating the talents of the
engineers, everyone had to agree that some of the company’s finest stood
behind EGO, but North Carolina’s leader was generally acknowledged to be
the company’s stellar designer after de Castro. Moreover, the company had
made a substantial investment in North Carolina as a research-and-
development facility, and Data General is a company that likes to see its
investments pay off without undue delay. “EGO was a group of five people,
FHP had fifty. You’re not gonna kill a group of fifty. The company’s not
gonna send FHP to North Carolina and then do EGO,” said West. But that
was later on. At this time he argued strongly for EGO. At a meeting before de
Castro in September 1977, the two sides traded promises. Westborough
would do EGO in a year. Well, then, North Carolina would do a version of
FHP in a year. West remembered: “De Castro looked around the room and
said, ‘It’s a dilemma.’ It’s a famous quote for him, never heard before or
since. I said, ‘Okay, we’ll stop building EGO,’ and de Castro walked out of
the room.”

West told himself that his team hadn’t lost; they’d merely retreated from a
battle they couldn’t win. Thinking of the promises North Carolina had made,
West explained later on: “They’d signed up to do the impossible. We weren’t
signed up to do anything. Right then, that looked like a pretty good position
to be in.” But EGO’s designers took it hard.

Rosemarie Seale, the Eclipse Group’s secretary, watched the proceedings
from afar. “Engineering is a man’s world. I don’t know how much territorial
interests have to do with it, but they’re all fighting for that piece of the pie.
There are some who can’t admit it, but all of them are,” she said. She was sad
for her troops. She had made special arrangements to get the document

describing EGO nicely typed up. “They wanted it to look really good for de
Castro.” She had wished them luck when they had gone upstairs with it. Now
she watched them trudge back down the hallway. “I knew the minute they hit
the department. Such depression. It was terrible, absolutely terrible. Ed de
Castro didn’t want them to do it.”

Certain of the engineers now entered what West called “the first off-the-
wall period.” A few quit. Others went on vacation immediately. Still others
spent the next couple of weeks playing a game called Adventure, in which
you travel by computer into an underground world, wandering through
strange, awful labyrinths, searching for treasure that’s guarded and
sometimes snatched away by dragons, dwarfs, trolls and a rapacious pirate
who mutters: “Har. Har.”

The period after EGO got killed was remembered as West’s speechifying
period. “Speeches of rising and falling expectations,” one engineer called
West’s orations. West told his group that from now on they would not be
engaged in anything like research and development but in work that was 1
percent R and 99 percent D; they’d pound out Eclipses and put money on the
bottom line and that was that and if they wanted to build “sexy” machines
that “the technology bigots” would like, then they’d have to look elsewhere.
Then West turned around and said that although they did not have the charter
to build a new 32-bit machine, they could still have some fun and a
challenge; they’d create a 16-bit minicomputer faster by a factor of two, or
maybe even four, than any the world had ever seen. The name of this project
was Victor, the Mature Eclipse. “Victor was a canard,” said West. But it gave
his people something to do.

Dreams of EGO died hard. According to West, some software engineers
at Westborough had felt despondent about EGO’s demise; they faced the
prospect of having no major new CPUs to write system software for. They
liked EGO. Thus bolstered, EGO’s creators got West to try to attempt an
EGO revival. West got the impression from the vice president of engineering
that EGO might win de Castro’s approval this time. But it didn’t. “De Castro
basically said, ‘Do something to extend the addressing capability of Eclipses,
but don’t use a mode bit,’ ” West remembered. West made more speeches of
rising and falling expectations. The second off-the-wall period hit their corner
of the basement. Privately, West felt very angry.

“No mode bit.” It seemed to him that de Castro was asking the Eclipse

Group to work with only one hand. West calmed down directly, though. “De
Castro’s always very vague,” he reasoned, “but when he says something, you
don’t figure he’s just shooting off his lip. You find out what’s wrong with
mode bits.” West asked around. He came to the conclusion that, once
employed, mode bits tend to proliferate in a company’s product line, leading
toward unnecessary development costs. “You get hung up in your own
underwear.” But de Castro had said only what he didn’t want. What did he
want them to do?

When FHP had gone south there had been some talk of “a 32-bit Eclipse.”
Some time before that, a person in Marketing had asked some members of
the Eclipse Group if they couldn’t just tweak a few things inside an Eclipse
and give it the extended logical-address space of a 32-bit machine. Back then,
they had brushed off the suggestion; it wasn’t that simple. Now West
virtually camped out in this executive’s office. He wanted to know what it
was that customers most desired. VAX had by now gone to market, with all
the usual hoopla, and was selling briskly. Other minicomputer companies had
entered 32-bit machines in the supermini sweepstakes. And a lot of Data
General’s old customers wanted one, but it seemed clear that they would also
want a machine that displayed the quality called software compatibility.

An old-fashioned automobile that can be started only with a crank
requires a person to make a series of adjustments more or less directly to the
engine; in a modern car, of course, you need only turn a key and a system of
electrical and mechanical devices does the rest. In the modern computer,
software has developed in such a way as to fill this role of go-between. On
one end you have the so-called end user who wants to be able to order up a
piece of long division, say, simply by supplying two numbers to the machine
and ordering it to divide them. At the other end stands the actual computer,
which for all its complexity is something of a brute. It can perform only
several hundred basic operations, and long division may not be one of them.
The machine may have to be instructed to perform a sequence of several of
its basic operations in order to accomplish a piece of long division. Software
—a series of what are known as programs—translates the end user’s wish
into specific, functional commands for the machine.

There are two general kinds of computer programs. The users write one
kind themselves or hire consultants to write them. These “user programs”
may look as though they are telling the computer what to do step by step, and

a relatively simple program—for calculating a company’s payroll, for
instance—may look forbiddingly long and complex. But this is nothing like
the length and complexity that the program would have if it really did work
directly on the machine. Instead, nowadays, a series of other programs that
are stored inside the computer breaks down commands such as “divide” into
several more basic commands that the machine is equipped to obey. These
intermediary programs, which serve as translators of user programs, are
known collectively as “system software.” It is usually the manufacturer’s
responsibility to create system software, and the customer’s to buy it when
purchasing a new machine.

By the mid-1960s, a trend that would become increasingly pronounced
was already apparent: while the expense of building a computer’s hardware
was steadily declining, the cost of creating both user and system software was
rising. In an extremely bold stroke, IBM took advantage of the trend. They
announced, in the mid-sixties, all at one time, an entire family of new
computers—the famous 360 line. In the commerce of computers, no single
event has had wider significance, except for the invention of the transistor.
Part of the 360’s importance lay in the fact that all the machines in the family
were software compatible.

It cost IBM a true fortune and no end of trouble and anxiety to create
system software for the 360 line. But all the machines in the family used that
same software. So IBM had to create the stuff only once, and thus was able to
amortize the cost of its development over all of the many thousands of 360’s
that it sold. Moreover, any user program that worked on one machine in the
family worked on all of them. Users become attached to their programs and
system software. Software is expensive. Getting it to function properly often
takes time. Software that works is precious. Users don’t idly discard it.
Obviously, this reluctance can present problems for computer manufacturers:
how do you get customers to buy bigger, better machines? Total software
compatibility made it easy for customers to do what IBM wanted them to do,
which was to buy several different kinds of 360 computers. A customer could
buy a small one now and later on buy a bigger one, or vice versa, without
having to re-create any software. Software compatibility strengthened IBM’s
already tight grip on its customers: they weren’t likely to forsake IBM and
take their business elsewhere when that meant assuming new expenses and
problems with software.

Soon every manufacturer of computers was employing some variation of
IBM’s 360 strategy of software compatibility. Data General had made all of
its NOVAs compatible one with the other, and likewise all the Eclipses.
Moreover, the designers had made the Eclipse “upwardly compatible” with
NOVAs. This meant that while new programs written for Eclipse computers
would not run on NOVAs, old programs written for NOVAs would work on
Eclipses. This sort of compatibility was a useful tool for marketing, for it
allowed customers to switch from NOVAs to Eclipses with relative ease—
they could do so without discarding all their old software.

Software compatibility is a marvelous thing. That was the essential lesson
West took away from his long talks with his friend in Marketing. You didn’t
want to make a machine that wasn’t compatible, not if you could avoid it.
Old customers would feel that since they’d need to buy and create all new
software anyway, they might as well look at what other companies had to
offer, they’d be likely to undertake the dreaded “market survey.” And an
incompatible machine would not make it easy for new customers to buy both
16-bit Eclipses and the new machine. This was the gist of what West learned.
He became increasingly interested. DEC’s VAX was only “culturally
compatible” with the line of machines that preceded it. Data General should
build a 32-bit machine that was fully compatible with Eclipses. “From a
marketing point of view what a win that would be!”

Matters proceeded so informally and with such speed that there would
never be any way of telling afterward where all of the first technical solutions
to the problem of making a 32-bit Eclipse came from. But it was West who
gathered them together. Soon he began an in-house PR campaign that would
not end for a long time.

Carl Alsing participated in the beginnings of West’s proselytizing. Among
other acts, Alsing gave the new, unbuilt machine the code name Eagle.
Mostly, though, he observed. Alsing was by temperament a watcher, a
moviegoer. He had been with West longer than anyone else in the Eclipse
Group. He felt that he knew West and then again he felt that he didn’t. West
launching Eagle was to Alsing something worth watching. For example, the
meeting West set up with the vice presidents of engineering and software.
West took Alsing along. The way it looked to Alsing, West brought two
proposals to the VPs. One of these was an obvious loser and the other was
Eagle. “West’s letting them pick Eagle,” thought Alsing, and he smiled.

“West’s never unprepared in any kind of meeting. He doesn’t talk fast or
raise his voice. He conveys—it’s not enthusiasm exactly, it’s the intensity of
someone who’s weathering a storm and showing us the way out. He’s saying,
‘Look, we gotta move this way.’ Then once he gets the VPs to say it sounds
good, Tom goes to some of the software people and some of his own people.
‘The bosses are signed up for this,’ he tells them. ‘Can I get you signed up to
do your part?’ He goes around and hits people one at a time, gets ’em
enthused. They say, ‘Ahhh, it sounds like you’re just gonna put a bag on the
side of the Eclipse,’ and Tom’ll give ’em his little grin and say, ‘It’s more
than that, we’re really gonna build this fucker and it’s gonna be fast as
greased lightning.’ He tells them, ‘We’re gonna do it by April.’ That’s less
than a year away, but never mind. Tom’s message is: ‘Are you guys gonna do
it or sit on your ass and complain?’ It’s a challenge he throws at them. So he
basically made us stop moaning about the demise of Westborough.”

Alsing went on: “West brought us out of our depression into the honesty
of pure work. He put new life into a lot of people’s jobs, I think.”

Not everyone associated with the Eclipse Group liked the looks of this
proposed new machine. They thought it would be just a refinement of the
Eclipse, which was itself a refinement of the NOVA. “A wart on a wart on a
wart,” one engineer said. “A bag on the side of the Eclipse.” Some even said
that it would be a “kludge,” and this was the unkindest cut. Kludge is perhaps
the most disdainful term in the computer engineer’s vocabulary: it conjures
up visions of a machine with wires hanging out of it, of things fastened
together with adhesive tape.

So some engineers dropped out of the project right away. To the
remainder and to new recruits, West preached whatever gospel seemed most
likely to stir up enthusiasm. It would be an opportunity for them to “get a
machine out the door with their names on it.” When Alsing came up with the
code name, Eagle, West felt pleased, because, he said, it was impossible to
say “Eagle” without it sounding as if you were saying “EGO.” Not that West
cared himself; he did not feel at all vengeful toward North Carolina. But
some others did. There would also be something here for technology bigots.
Eagle would not be, as the saying goes, “a clean sheet of paper”; but there
would be some clean corners to work in. It might look at first glance like a
VW Beetle, but think what they could put under the hood. This wasn’t going
to be just a slight variation on the Eclipse CPU, but a wholly new and fast

machine that would happen to be compatible with Eclipses. It would put
money on the bottom line, of course. Lots of money. They were going to do it
in record time, because the company needed this machine desperately. And
when they succeeded, they would be heroes.

If, after EGO had been canceled, you had left the Eclipse Group moping
in their corner of the basement, and had returned a year later, you surely
would have failed to recognize the place. At some moments, their corner of
the building now had the air of a commuter train about it, and at others, the
silent intensity of a university library on the eve of exams—many new young
faces peering into cathode-ray tubes, leafing through fat documents. In the
conversation around there you heard words and phrases such as these: A
canard was anything false, usually a wrongheaded notion entertained by
some other group or company; things could be done in ways that created no
muss, no fuss, that were quick and dirty, that were clean. Fundamentals were
the source of all right thinking, and weighty sentences often began with the
adverb fundamentally, while realistically prefaced many flights of fancy.
There was talk of wars, shootouts, hired guns and people who shot from the
hip. The win was the object of all this sport and the big win was something
that could be achieved by maximizing the smaller one. From the vocabulary
alone, you could have guessed that West had been there, and that these
engineers were up to something.

Rosemarie Seale, the group’s main secretary, felt excitement in the air.
She, for one, took West’s exhortations to heart. She resolved to do whatever
she could in order to keep bureaucratic and trivial affairs from distracting
these youngsters on their crucial mission. Her spirit never flagged, but from
time to time she did wonder why, if this project was so important to the
company, so few people in other departments seemed to recognize the fact.
Why, for instance, was it allowed that the mailroom be moved in the midst of
the project, creating the risk that vital mail would be held up? To prevent that
sort of small catastrophe, for several weeks she would go to the mailroom
daily and sort through the mail herself. Likewise, why would the carpenters
be allowed to come in during a particularly delicate phase of the Eagle
project and totally remodel the Eclipse Group’s office space?

The answer, one possible answer, was that West had two ways of
describing Eagle. One way made it sound important and glorious; the other,
like something routine. West explained: “You gotta distinguish between the

internal promotion to the actual workers and the promoting we did externally
to other parts of the company. Outside the group I tried to low-key the thing.
I tried to dull the impression that this was a competing product with North
Carolina. I tried to sell it externally as not much of a threat. I was selling
insurance; this would be there if something went wrong in North Carolina. It
was just gonna be a fast, Eclipse-like machine. This was the only way it was
gonna live. We had to get the resources quietly, without creating a big
brouhaha, and it’s difficult to get a lot of external cooperation under those
circumstances.”

West went on, theorizing now: “The company would have been just as
happy if we hadn’t done it. De Castro thought he had it covered in North
Carolina. But once you got somebody saying, ‘Hey, we want to do this,’ then
you’re in a position where you gotta say no, and that’s a different proposition.
A bunch of good engineers were getting ready to quit from being told no too
many times already; that’s another problem. I went to de Castro about Eagle
at some point. I said, ‘We’ll do it in a year,’ and he may have said, ‘Okay.’
But it was clear we had to do it in a year to have any chance.”

Years before, according to local legend, West’s mentor, the former leader
of the Eclipse Group, had said that he could build a NOVA on a single
printed-circuit board. Told that he was suffering from delusions of grandeur,
he did the job at home on his kitchen table and wound up producing the best-
selling of all the NOVAs. Before that, de Castro and two of the other
founders had cut loose from their old company, in order to build a new
computer. West was doing nothing so extreme. He seemed to have the full
support of Data General’s vice president of engineering, Carl Carman. He
was given money to hire new recruits. He had de Castro’s laconic permission
to give Eagle a try. But even after the project had begun, West would say (for
example), “De Castro won’t take a piece of paper from me on this machine.”
He would remark, “There’s a lot of people pretending that this project doesn’t
exist.” Some others in the group expressed the same contradictory feeling:
that they were building a machine absolutely essential to the company but
were doing it all on their own. “I think we’re doing it in spite of Data
General,” one of the older hands in the group said. The circumstances
fostered such an attitude. So did West. Deliberately, somewhat
surreptitiously, he separated his team from the rest of the company.

“We’re building what I thought we could get away with,” West said.

3

BUILDING A TEAM

THE BASEMENT of Westborough, subterranean at the front of Building 14A/B
and at ground level in back, was one of the places in Data General’s widening
empire where machines were conceived, designed, labored over in
prototypes, and sometimes brought to life. Tom West led the way down into
this region one night, through confusing corridors. I would try to learn my
way around by noting small landmarks—a copying machine at a corner, a
bulletin board trimmed with company news about dental programs and new
Data General disk drives. Off some of the hallways were mysterious doors,
locked up and bearing signs that said in loud letters RESTRICTED AREA.

Then the hallways opened and all around under fluorescent light lay fields
of cubicles without doors. Their walls—made of steel, some of them covered
with cream-colored cloth—did not reach the ceiling, but stood about five and
a half feet high. You could look over them. They created no privacy. Most of
the cubicles were empty now, but each would contain one person during the
day. Most had a desk with a computer terminal on it, and a little bookcase.
Some held a drafting table and many had a houseplant or two. Many green
plants poked their heads, like periscopes, above the tops of the cubicles’
walls. “The great statement,” said West, gesturing at the foliage, wearing a
little grin that puckered one cheek.

The arrangements looked temporary, and in fact they were. As one of the
company’s PR men explained, cubicles laid out as in a maze allow a greater
density of workers per square foot than real offices with doors. Easily
movable walls allow management to tinker with that area-to-people ratio
without incurring enormous expense—for instance, to create fully enclosed
offices where cubicles have been when it turns out that some jobs are most
efficiently performed behind doors. It was said that the company’s vice
president for manufacturing could turn Westborough into a factory overnight,

and maybe the joke had some substance. The last headquarters—compared to
which this one was plush—had in fact been turned into a factory.

Westborough seemed designed for quick changes. Smiling his wry smile,
West offered some additional theories: “We can change it all around. It keeps
up the basic level of insecurity…. It’s basically a cattle yard…. What goes on
here is not part of the real world.”

“How so?”
“Mmmmmmmmmh. The language is different.”
Some of it was, and a phrase book, such as the Penguin Dictionary of

Computers, could be useful. ECO—each letter pronounced—meant
“engineering change order.” Hence this remark: “A friend of mine told his
girlfriend they had to ECO their relationship.” Give me a core dump meant
“Tell me your thoughts,” for in the past, when computers used “core
memories,” engineers sometimes “dumped” the contents of malfunctioning
machines’ storage compartments to see what was wrong. A stack is a special
small compartment of memory, a sort of in-box inside a computer; it holds
information in the order in which the information is deposited and when it
gets overfull, it is said to “overflow.” Hence the occasional complaint, “I’ve
got a stack overflow.” “His mind is only one stack deep,” says an engineer,
describing the failings of a colleague, but the syntax is wrong and he
rephrases, saying: “See. He can push, but when it comes time to pop, he goes
off in all directions”—which means that the poor fellow can receive and
understand information but he can’t retrieve it in an orderly fashion.

The basement, it seemed, was never empty. Even in the small hours of the
morning someone would be sitting in a little pool of light in a cubicle,
working. By day, the place held a throng. I saw them all collected once, out
back in the parking lot, during a fire drill. I counted only a couple of black
faces, but I saw many women, many of them in skirts, and I presumed most
were secretaries, because I knew that here as in the industry generally female
engineers were scarce. Men were numerous. Most looked as though they
were in their twenties. Only a few wore jackets and ties; the rest were dressed
casually and, on the whole, neatly. Once, down in the basement, I saw an
engineer who wore not just long but shaggy hair and who was wearing Army-
surplus clothes. He was slouching off down a corridor carrying a canteen cup.
His appearance was sufficiently unusual that one of West’s team took pains
to point him out to me.

West led the way into the Eclipse Group’s quarters. They were
indistinguishable from any other group’s, except at night perhaps, during the
Eagle project, when, as a rule, more lamps burned on in their cubicles than
elsewhere in the basement. You could tell that an engineer enjoyed some rank
if he had an office with a door. West had one of these. It was tiny and
windowless. A thick, jacketed pipe and a steel girder descended through it,
down the face of a cinder-block wall. There were some gray metal chairs, a
gray metal bookcase, a couple of small gray metal tables and a gray metal
desk, the top of which was absolutely clean save for a single stack of papers
with their edges perfectly squared. A Magic Marker board, at the moment
displaying some incomprehensible diagram, hung on one wall. For
adornments there were an old clock in a beautiful oak case, and on the wall
behind West’s back, a picture of a square-rigged sailing ship. On the wall
beside him hung several photographs of computers.

Physicians hang diplomas in their waiting rooms. Some fishermen mount
their biggest catch. Downstairs in Westborough, it was pictures of computers.

When engineers finished a project and word of approval came down from
the offices of the executives and the various arms of the company got ready
to announce the machine to the world that spends so lavishly on computing
equipment, then the Marketing Department would usually hand out to each
person who had helped to create the new computer a framed photograph of it.
Several of these sorts of pictures hung in West’s office. West had a saying:
“The game around here is getting a machine out the door with your name on
it.” One of the photographs on his wall showed a model of Data General’s
first Eclipse computer, and, apropos of his remark, printed on the machine
was a list of eight names. West’s was among them and so was Carl Alsing’s.
An identical photograph hung in Alsing’s cubicle.

The same image, of that first Eclipse, also sat on a windowsill in an office
at another computer company. It belonged to an engineer who had worked for
Data General back in the days when the Eclipse was being built. The picture
was just a photo of an immobile plastic box, but the former Data General
engineer gazed at it, and he smiled. “It was a lot of fun, a lot of pressure.
With the Eclipse there was a tremendous amount of team spirit. We were
going twenty-four hours a day debugging that prototype, breathing on it hard
to make it come to life.

“West did do an awful lot of the debugging. I would say he’s an excellent

engineer. I really think that Tom was very much of a problem solver. It was
decided that the Eclipse should have error-correction code. What was that?
There wasn’t that much written about it at that time. Tom went and learned
about it and came up with how to do it. Some reports I hear about Tom—I
hear that he’s very different in a management role. I hear in his management
role he’s a very tough guy, very closed, but he was an easygoing guy then,
though hardworking.

“Tom used to have these all-day picnics at his house. He’d roast a pig,
there’d be a keg of beer. He was a hell of a nice guy! I enjoyed him a lot.”

Many people recalled West’s annual pig roasts. Enough people attended,
said another old friend, that the odds lay in favor of a child being born during
the fete, and the guest list included painters and writers, musicians, footloose
young folks and also computer people. West is remembered, his face all lit
up, moving among the throng, surveying his wide and disparate acquaintance.
“He was so happy and funny and warmhearted,” said another regular at the
roasts.

West came to Data General in 1974, joining Carl Alsing and the other
engineers who were attempting to bring the first Eclipse to life. To Alsing,
West appeared to be just a good, competent circuit designer, but strikingly
adept at finding and fixing the flaws in a computer. “A great debugger,”
Alsing considered him. “He was so fast in the lab I felt I was barely adequate
to hold the probes of the oscilloscope for him.” Alsing took a shine to his
new colleague almost at once. The morning after an Eclipse Group party, he
and West, on the spur of the moment, took a trip to Provincetown on Cape
Cod. Alsing was amazed at how easily West found his way among strangers
and how he seemed to be able to identify the most interesting bars by just
glancing through their doorways. West possessed that town for an evening, as
if he’d lived there all his life and were showing Alsing around.

One time Alsing stayed up all night in a lab programming a batch of
ROMs, or “read-only memory” chips. West found Alsing still at this work the
next morning, and laughing, he cried out: “Alsing! You’re a ROM-driven
man!” Then West made up a song by that title to the tune of “John Henry.”
West was always inventing catchy expressions, and “ROM-driven” was
Alsing’s favorite. The contents of a ROM, once programmed into the chip,
cannot be altered or erased; the information can only be “read.” ROM-driven:
it opens up the ancient question of predestination and free will. Later, Alsing

would wonder how the phrase applied to his friend. So would West himself,
apparently, for one day downstairs, during the Eagle project, he would ask—
laughing his nervous-sounding laugh, not the hearty one of the pig roasts
—“Doesn’t anything around here happen by accident?”

From West, Alsing was able to glean only a few biographical facts: that
he had gone to Amherst College, majoring in physics there; that he had
worked for the Smithsonian Institution afterward, building digital clocks,
among other things, and traveling a lot; that he had quit that job just like that,
after seven years, and had virtually taught himself computer engineering
while working for RCA. There was a little more: West’s father was an
important man, one of the most senior executives of AT&T; West had a wife
and daughters; West played the guitar well, and personally knew many
famous folksingers. Alsing listened to his stories. West told him that one
night, while he was traveling through Mozambique on business for the
Smithsonian, he got out of a Landrover and yelled into the darkness:
“Massachusetts! Massachusetts!”

“I thought someone might hear me,” West explained, “and someday
there’d be a bunch of kids running around out there named Massachusetts.”

Alsing clapped his hands and laughed and laughed. He always wanted to
hear more.

West had been to places that Alsing never dreamed he himself would
visit. Alsing could not help envying him a little, not least of all because West
seemed so free. West was, to Alsing then, like that mysterious stranger just
passing through town. West told him about quitting his job with the
Smithsonian on the spur of the moment, and of a troupe of latter-day gypsies
—a band of youngsters on the roam who had camped in a field near his
house. Alsing was left feeling that if those gypsies passed through town
again, West might go away with them. When West talked about his music,
Alsing got the same feeling; he fully expected to come to work some morning
and find that West had departed for good, most likely without leaving a
forwarding address, and the idea charmed Alsing—and also made him feel a
little sad, of course.

But it didn’t turn out that way. When the first Eclipse went to market and
the group’s original leader began to take leave, in order to work on FHP,
West asked that he be given command of the team. West seemed to Alsing
the logical choice for the job: “He was the smartest guy around.” But Alsing

was very surprised that West wanted the position.
As Alsing remembered, West was told in effect that it was out of the

question. West had been asked weeks before to design a piece of equipment
called an IOP, and he had not done a lick of work on it yet. What made him
think he could run the Eclipse Group?

West went into his office then and closed his door for about seven weeks.
West and Alsing usually went out for coffee in the middle of the morning,

but not now.
Alsing poked his head into West’s office. “Coffee, Tom?”
“Go away, Carl,” West replied.
Alsing tried on another day. Without looking up from his work, West said,

in a flat, calm voice, “Get out, Alsing.”
Alsing sensed that there was nothing personal in these rebuffs, and he

found it impossible to get angry at West. After seven weeks, West emerged,
the completed design for the IOP in his hands. Little by little after that, he
assumed command of the Eclipse Group. Reflecting some years later on
those seven weeks of West’s labor, Alsing said: “The day Tom went into his
office to do the IOP was the day he started getting tough. I think it was the
day when he started to care.”

Over the next several years, successive generations of engineers joining
the group would know less of West than their predecessors had, until finally,
by the time of Eagle, new recruits would know almost nothing about him at
all. They’d know nothing of pig roasts; that custom had lapsed. Their view of
West would be restricted mainly to chance encounters in hallways. West
would come down a corridor dragging the knuckles of one hand along the
wall, and often he would pass right by members of his own team, without, it
seemed, even noticing them. For their part, most gave up trying to greet him.
The distant, angry look on his face warned against it.

Occasionally, some of the Eclipse Group wondered about their leader.
“We’ve heard that he worked for the CIA.”
“Wasn’t he a folksinger?”
“A lot of guys think he’s a speed freak.”
“West,” said one young engineer, “is a prince of darkness.”
He had changed. There was no denying that. Though remaining as close

to him as anyone in the basement, Alsing rarely saw him after work anymore.
Almost no one from Westborough did, it seemed. West was Alsing’s boss

now; that was part of it. But he wasn’t as obviously happy and merry as he
had been, and his jokes, though Alsing still found them witty, tended now
toward the sardonic. He’d smile with one side of his mouth, whereas he used
to grin with all of it. Every so often, Alsing did see flashes of the old West.
This was true especially in West’s campaign after EGO, his assiduous
canvassing for Eagle, his successful attempt to rouse various parts of the
basement from depression. To be sure, most of the humor and merriment was
still missing, and this fellow of formerly eclectic passions now seemed
completely single-minded; but West’s campaign reminded Alsing of their
adventure years before in Provincetown. West rarely lent his enthusiasm to
“someone else’s trip,” Alsing noted. “But if it’s his own or he makes it his
own…”

West still had a way of making ordinary things seem special; in this case a
32-bit Eclipse was being transformed into the occasion for an adventure.
West’s ardor for it seemed to spread the way his neologies did. Others
besides Alsing felt infected.

For Rosemarie Seale, the main excitement began after EGO was canceled
and everyone but West seemed ready to pack it in. “Tom’s obviously made
some decision which I know nothing about,” she said. “He’s decided he isn’t
gonna take his bat and ball and go home.” Later, she would say: “I wanted to
work for him. I could have gotten more pay elsewhere. I didn’t understand it
all, but I knew I wanted to work for him. I wanted to be part of that effort.”

Rosemarie is a petite, brown-haired woman in her middle years. She
speaks rapidly and punctuates most statements with a quick, low laugh which
makes it seem as though she’s chuckling while she talks. “I grew up in a poor
family, in Depression times. I went to secretarial school in Boston. I brought
up a family. I got divorced. I traveled a bit. I was a stupid, ignorant girl when
I was young, and I think I’ve learned a few things, but probably not many.”
In 1976 Rosemarie was working for an insurance company, supervising the
underwriting files, a job that held her interest for exactly one month. The files
had been a mess, but once she’d gotten them cleaned up, the work became
completely routine. Then she saw a help-wanted ad for Data General in a
newspaper. It asked:

ARE YOU BORED?

“It was speaking to me!”
She was assigned to the Eclipse Group, which was tiny then and had

never had a secretary. The engineers “found” her a desk, as she put it. She
opened the team’s lone filing cabinet and found nothing in it, except for a
couple of rolls of toilet paper. No list of the group’s members existed. She
went from one engineer to another, asking, “Do you have any idea who you
work for?” It was the beginning of a long romance.

To Rosemarie, the Eagle project was like a gift. She had so much to do
every day: budgets to prepare, battles to fight with one department or another,
mail to sort when the mailroom was untimely moved, phones to answer,
documents to prepare, paychecks to find and deliver on time, the newcomers
to attend to (“Would they have a place to sit—and the conditions weren’t the
best, you know—and would they have a pencil?”). Each day brought another
small administrative crisis. “I was doing something important,” she said.

Rosemarie did not always realize that she was having a good time, of
course. Having trained all the team’s newcomers to tie their shoes, in an
administrative sense, she began to feel that they regarded her as a surrogate
mother, which annoyed her, until she decided: “You are what you are. I
might as well enjoy that, too.” She always hated answering the phones,
though. Once in a while she even talked about quitting. Sympathizing, Alsing
once asked her why she didn’t just do it.

“I can’t leave,” she answered. She flashed a furtive grin at Alsing, and
nodding her head toward West’s office door, she said, in a lowered voice:
“It’s like one of those terrible movies. I just have to see how it comes out. I
just have to see what Tom’s gonna do next.”

So there was another watcher. Alsing was delighted.

Convinced that Eagle would be a wart, a bag, a kludge—and suspicious
that it would go the way of EGO and Victor—some of the brightest hardware
engineers around expressed no interest in joining the project. Others went
along, some reluctantly at first, and by the very early spring of 1978 West
had gathered the makings of a team. He had Rosemarie and Alsing and about
a dozen other experienced engineers, who had worked for him before. For a

time West thought that their numbers would suffice, but really they were just
a cadre. It became obvious, when they started designing the “logic” of the
new machine, that such a tiny group would never be able to produce a
computer like this in a year. “We need more bodies,” said West to Alsing,
and Alsing agreed.

North Carolina’s leaders had assembled a large crew mainly by luring
experienced engineers away from Westborough and other companies. But
around this time videotape was circulating in the basement, and it suggested
another approach. In the movie, an engineer named Seymour Cray described
how his little company, located in Chippewa Falls, Wisconsin, had come to
build what are generally acknowledged to be the fastest computers in the
world, the quintessential number-crunchers. Cray was a legend in computers,
and in the movie Cray said that he liked to hire inexperienced engineers right
out of school, because they do not usually know what’s supposed to be
impossible. West liked that idea. He also realized, of course, that new
graduates command smaller salaries than experienced engineers. Moreover,
using novices might be another way in which to disguise his team’s real
intentions. Who would believe that a bunch of completely inexperienced
engineers could produce a major CPU to rival North Carolina’s?

“Shall we hire kids, Alsing?” said West.
For a couple of weeks he and Alsing discussed the idea. To make it work

they’d have to hire the very best new engineers they could find, ones who
would know more about the state of the art in computers than they did. They
told each other that they’d have to be sure not to turn away candidates just
because the youngsters made them feel old and obsolete; on the contrary,
those were the candidates they’d have to welcome. Smiling, West allowed
that if they did this, they might be hiring their own replacements—their own
assassins. Even if they did hire prodigies, of course, the scheme might not
work. Maybe you couldn’t build a major CPU with kids. It was awfully risky.
It was a compelling idea.

Between the summer of 1978 and the fall of that year, West’s team
roughly doubled in size. To the dozen or so old hands—old in a relative sense
—were added about a dozen neophytes, fresh from graduate schools of
electrical engineering and computer science. These newcomers were known
as “the kids.” West was the boss, and he had a sort of adjutant—an architect
of the electronic school—and two main lieutenants, each of whom had a

sublieutenant or two. One lieutenant managed the crew that worked on the
hardware, the machine’s actual circuitry, and the members of this crew were
called, and called themselves, “the Hardy Boys.” The other main part of the
team worked on microcode, a synaptic language that would fuse the physical
machine with the programs that would tell it what to do. To join this part of
the group, which Alsing ran, was to become one of “the Micro-kids.” There
were also a draftsman and some technicians. The group’s numbers changed
from time to time, generally diminishing, as people dropped out. But usually
they totaled about thirty.

How was it to be one of “the kids”? You were in no danger of being fired,
but you didn’t know that, and besides, when you are brand-new in a job you
want to make a good impression right from the start. So you set out to get to
know your boss, as Hardy Boy Dave Epstein did. You walk into his office
and say, “Hi, I’m Dave,” and you begin to extend your hand. Epstein would
never forget that experience: “West just sat there and stared at me. After a
few seconds, I decided I’d better get out of there.”

Going to work for the Eclipse Group could be a rough way to start out in
your profession. You set out for your first real job with all the loneliness and
fear that attend new beginnings, drive east from Purdue or Northwestern or
Wisconsin, up from Missouri or west from MIT, and before you’ve learned to
find your way to work without a road map, you’re sitting in a tiny cubicle or,
even worse, in an office like the one dubbed the Micropit, along with three
other new recruits, your knees practically touching theirs; and though lacking
all privacy and quiet, though it’s a job you’ve never really done before, you
are told that you have almost no time at all in which to master a virtual
encyclopedia of technical detail and to start producing crucial pieces of a
crucial new machine. And you want to make a good impression. So you don’t
have any time to meet women, to help your wife buy furniture for your
apartment, or to explore the unfamiliar countryside. You work. You’re told,
“Don’t even mention the name Eagle outside the group.” “Don’t talk outside
the group,” you’re told. You’re working at a place that looks like something
psychologists build for testing the fortitude of small animals, and your boss
won’t even say hello to you.

New and old hands told the same story. Chuck Holland: “I can hardly say
I do anything else now. It takes about three days to get Eagle out of my mind,
so if you have a three-day weekend, you’re just sorry to see Monday come.”

Microkid Betty Shanahan, the group’s lone female engineer: “You can end
up staying all night. You can forget to go home and eat dinner. My husband
complained that the last three times he’s had to do the laundry.” Jon Blau:
“I’ve had difficulty forming sentences lately. In the middle of a story my
mind’ll go blank. Pieces of your life get dribbled away. I’m growing up,
having all those experiences, and I don’t want to shut them out for the sake of
Data General or this big project.” Jim Guyer, a Hardy Boy and an old hand at
age twenty-six, said: “I like my job, it’s great, I enjoy it. But it’s not what I
do for recreation. Outside of work, I do other things, like rock-climbing and
hiking.” Guyer paused. A thought had just occurred to him. “I haven’t done
any of that lately. Because I’ve been working too much.”

But where did the relish in their voices come from?
At the start of the project, a newcomer could expect to earn something like

$20,000 a year, while a veteran such as Alsing might make a little more than
$30,000—and those figures grew enormously at Data General and elsewhere
over the next few years. But they received no extra pay for working overtime.
The old hands had also received some stock options, but most seemed to
view the prospect of stock as a mere sweetener, and most agreed with Ken
Holberger, sublieutenant of Hardy Boys, who declared, “I don’t work for
money.”

Some of the recruits said they liked the atmosphere. Microkid Dave
Keating, for instance, had looked at other companies, where de facto dress
codes were in force. He liked the “casual” look of the basement of
Westborough. “The jeans and so on.” Several talked about their “flexible
hours.” “No one keeps track of the hours we work,” said Ken Holberger. He
grinned. “That’s not altruism on Data General’s part. If anybody kept track,
they’d have to pay us a hell of a lot more than they do.” Yet it is a fact, not
entirely lost on management consultants, that some people would rather work
twelve hours a day of their own choosing than eight that are prescribed.
Provided, of course, that the work is interesting. That was the main thing.

A couple of the Microkids were chatting. They talked about the jobs they
had turned down.

“At IBM we wouldn’t have gotten on a project this good. They don’t hand
out projects like this to rookies.”

“They don’t hand out projects like this to rookies anywhere but Data
General.”

“I got an offer at IBM to work on a memory chip, to see what could be
done about improving its performance. Here I got an offer to work on a major
new machine, which was gonna be the backbone of company sales. I’d get to
do computer design. It wasn’t hard to make that choice.”

Bob Beauchamp, another Microkid, had come from Missouri. He wore a
small red beard. He was perhaps the most easygoing of the recruits. He had
wider experience of the world than most, having taken a year off from school
to play in a traveling rock band. Beauchamp seemed to be one of those
fortunate souls: likable, modest, good-looking and smart. He had compiled an
unblemished, straight-A average in graduate school. “I tended to enjoy takin’
tests through school. I kinda like to measure myself,” he said. “I’d spent five
years in college learning, never really doing anything. When I got to Data
General, I figured it was time to do something; and also I was new to this part
of the world, and by myself, and even on weekends I didn’t have a whole lot
better to do. I might as well pass the time at work.” But Beauchamp had
opted to work on a part of the project that turned out to have a low priority.
“There was no pressure. I felt out of the mainstream of things. There was
intensity in the air. I kinda liked the fervor and I wanted to be part of it.”
Eventually, a suggestion came down that Beauchamp go to work on some of
the machine’s microcode. He was essentially offered the chance for some
grueling work, and he accepted with alacrity. “I jumped on it, really,” he said.

Talk about Tom Sawyer’s fence.

There was, it appeared, a mysterious rite of initiation through which, in
one way or another, almost every member of the team passed. The term that
the old hands used for this rite—West invented the term, not the practice—
was “signing up.” By signing up for the project you agreed to do whatever
was necessary for success. You agreed to forsake, if necessary, family,
hobbies, and friends—if you had any of these left (and you might not if you
had signed up too many times before). From a manager’s point of view, the
practical virtues of the ritual were manifold. Labor was no longer coerced.
Labor volunteered. When you signed up you in effect declared, “I want to do
this job and I’ll give it my heart and soul.” It cut another way. The vice
president of engineering, Carl Carman, who knew the term, said much later
on: “Sometimes I worry that I pushed too hard. I tried not to push any harder

than I would on myself. That’s why, by the way, you have to go through the
sign-up. To be sure you’re not conning anybody.”

The rite was not accomplished with formal declarations, as a rule. Among
the old hands, a statement such as “Yeah, I’ll do that” could constitute the act
of signing up, and often it was done tacitly—as when, without being ordered
to do so, Alsing took on the role of chief recruiter.

The old hands knew the game and what they were getting into. The new
recruits, however, presented some problems in this regard.

The demand for young computer engineers far exceeded the supply. The
competition for them was fierce. What enticements could the Eclipse Group
offer to the ones they wanted that companies such as IBM could not? Clearly,
West and Alsing agreed, their strongest pitch would be the project itself.
Alsing reasoned as follows: “Engineering school prepares you for big
projects, and a lot of guys wind up as transformer designers. It’s a terrible
letdown, I think. They end up with some rote engineering job with some
thoroughly known technology that’s repetitive, where all you have to do is
look up the answers in books.” By contrast, Alsing knew, it was thought to be
a fine thing in the fraternity of hardware engineers—in the local idiom, it was
“the sexy job”—to be a builder of new computers, and the demand for
opportunities to be a maker of new computers also exceeded the supply. West
put it this way: “We had the best high-energy story to tell a college graduate.
They’d all heard about VAX. Well, we were gonna build a thirty-two-bit
machine less expensive, faster and so on. You can sign a guy up to that any
day of the year. And we got the best there was.”

But the new recruits were going to be asked to work at a feverish pace
almost at once. They’d have no time to learn the true meaning of signing up
on their own. They had to be carefully selected and they had to be warned.
Common decency and the fear of having to feel lingering guilt demanded that
this be done.

The Eclipse Group solicited applications. One candidate listed “family
life” as his main avocation. Alsing and another of West’s lieutenants felt
wary when they saw this. Not that they wanted to exclude family men, being
such themselves. But Alsing wondered: “He seems to be saying he doesn’t
want to sign up.” The other lieutenant pondered the application. “I don’t
think he’d be happy here,” he said to himself. The applicant’s grades were
nothing special, and they turned him away.

Grades mattered in this first winnowing of applications—not only as an
indication of ability but also as a basis for guessing about a recruit’s capacity
for long, hard work—and with a few exceptions they turned down those
whose grades were merely good.

Alsing hoped to recruit some female engineers, but in 1978 they were still
quite scarce. Only a few young women applied, and Alsing hired one, who
had fine credentials.

When they liked the looks of an application, they invited the young man
—it was usually a young man—to Westborough, and the elders would
interview him, one by one. If he was a potential Microkid, the recruit’s
interview with Alsing was often the crucial one. And a successful interview
with Alsing constituted a signing up.

Alsing would ask the young engineer, “What do you want to do?”
Exactly what the candidate said—whether he was interested in one aspect

of computers or another—didn’t matter. Indeed, Alsing didn’t care if a recruit
showed no special fondness for computers; and the fact that an engineer had
one of his own and liked to play with it did not argue for him.

If the recruit seemed to say in reply, “Well, I’m just out of grad school
and I’m looking at a lot of possibilities and I’m not sure what field I want to
get into yet,” then Alsing would usually find a polite way to abbreviate the
interview. But if the recruit said, for instance, “I’m really interested in
computer design,” then Alsing would prod. The ideal interview would
proceed in this fashion:

“What interests you about that?”
“I want to build one,” says the recruit.
(“That’s what I want to hear,” thinks Alsing. “Now I want to find out if he

means it.”)
“What makes you think you can build a major computer?” asks Alsing.
“Hey,” says the recruit, “no offense, but I’ve used some of the machines

you guys have built. I think I can do a better job.”
(“West and I have a story that we tell about Eagle machine. But I want to

hear this guy tell me part of that story first. If he does, if there’s some fire in
his eyes—I say ‘in his eyes,’ because I don’t know where it is; if it’s there,
it’s there—but if he’s a little cocky and I think we probably want this person,
then I tell him our story.”)

“Well,” says Alsing, “we’re building this machine that’s way out in front

in technology. We’re gonna design all new hardware and tools.” (“I’m trying
to give him a sense of ‘Hey, you’ve finally found in a big company a place
where people are really doing the next thing.’ ”) “Do you like the sound of
that?” asks Alsing.

“Oh, yeah,” says the recruit.
(“Now I tell him the bad news.”)
“It’s gonna be tough,” says Alsing. “If we hired you, you’d be working

with a bunch of cynics and egotists and it’d be hard to keep up with them.”
“That doesn’t scare me,” says the recruit.
“There’s a lot of fast people in this group,” Alsing goes on. “It’s gonna be

a real hard job with a lot of long hours. And I mean long hours.”
“No,” says the recruit, in words more or less like these. “That’s what I

want to do, get in on the ground floor of a new architecture. I want to do a big
machine. I want to be where the action is.”

“Well,” says Alsing, pulling a long face. “We can only let in the best of
this year’s graduates. We’ve already let in some awfully fast people. We’ll
have to let you know.”

(“We tell him that we only let in the best. Then we let him in.”)
“I don’t know,” said Alsing, after it was all done. “It was kind of like

recruiting for a suicide mission. You’re gonna die, but you’re gonna die in
glory.”

4

WALLACH’S GOLDEN MOMENT

A YOUNG COMPUTER ENGINEER, known to be one of the most skillful in
Westborough’s basement, said he had a fantasy about a better job than his. In
it, he goes to work as a janitor for a computer company whose designs leave
much to be desired. There, at night, disguised by mop and broom, he sneaks
into the offices of the company’s engineers and corrects the designs on their
blackboards and desks.

Dreams of pure freedom were not uncommon in the basement. For those
who had such fantasies, the best job imaginable would allow them to try to
build the unattainable, the perfect computer. What, by contrast, would be one
of the worst jobs? One that obliged an engineer to build a kludge. Tom West
had to deal with such feelings. This was one of the first and most difficult of
his problems.

West needed an architect. In computers, an architecture describes what a
machine will look like to the people who are going to write software for it. It
tells not how the machine will be built, but what it will do, in detail. Drawing
up such a blueprint would be the crucial first technical act in the making of
this 32-bit, fully Eclipse-compatible computer that could have no mode bit.
West wasn’t absolutely certain that such a machine could be made. If it
could, what would be the best approach? He had no idea, but he thought he
knew who would. Right at the start West decided that a Data General
employee named Steve Wallach should be Eagle’s architect. “He’s the only
guy for that job,” said West. “The guy’s a walking dictionary and
encyclopedia of computers. He’s the best guy in the world for that job.”

Accordingly, West called Wallach to his office in the spring of 1978 and
asked him to draw up the architecture for a 32-bit Eclipse.

Steve Wallach glared at West. Wallach got to his feet and, coining a
phrase, said: “Fuck that! I’m not puttin’ a bag on the side of the Eclipse.”

Then he stomped out of West’s office.
For a time after that, Chuck Holland, an engineer who had been with the

team a couple of years, worked on the architecture; he did a great deal of
work and an entirely creditable job, as far as he was allowed to go. To West,
however, no one else but Wallach would do. He’d get Wallach to sign up
somehow. Wallach, he believed, really did want to work on a 32-bit Eclipse,
he just didn’t know it yet. West knew Wallach. He figured that as much as
Wallach wanted to work with a clean sheet of paper and no constraints, he
wanted two other things more. These were tangible success and revenge.

Wallach was raised in Brooklyn. His father was a compositor, a
practitioner of the craft of hot-metal typesetting, which will soon be all but
demolished by the craft that Wallach chose to pursue. There is irony in that,
but Wallach didn’t think it lamentable. He remembered his father coming
home from work with his clothes and hands covered with indelible printer’s
ink, and his father saying that he did not want his son growing up to come
home dirty too. The younger Wallach’s talents showed themselves early. He
was a frequent and successful entrant in children’s science fairs. He went to
Stuyvesant High, one of New York City’s best public schools; his grade point
average—he remembered it exactly—was 93.67 and he graduated forty-
eighth in his class. He won scholarships, first to Brooklyn Polytechnic, where
he discovered computers and got his bachelor’s degree, then to the University
of Pennsylvania, where he took a master’s in electrical engineering. Then he
went to work at Honeywell, in Massachusetts.

In one of his first jobs, Wallach worked as junior engineer on a piece of a
fancy new computer. But just as that machine was nearly complete,
Honeywell merged with General Electric, and when the dust settled the new
computer had been scrapped. It never came to light. If Job had been a
computer engineer, his travail would have begun in that way.

“Engineers want to produce something,” said Wallach. “I didn’t go to
school for six years just to get a paycheck. I thought that if this is what
engineering’s all about, the hell with it.” He went to night school, to get a
master’s in business administration. “I was always looking for the buck. I’d
get the M.B.A., go back to New York, and make some money,” he figured.
But he didn’t really want to do that. He wanted to build computers.

He took a job at Raytheon, and in time he was assigned to work on
another fancy new machine, something called the advanced avionics digital
computer; the Navy was paying for its development. According to Wallach,
he and another young engineer did most of the actual work on it. One day a
team of Navy consultants trooped through their lab. The consultants
proclaimed the machine too complex; they said that the engineers would
never get it to work. They were wrong. Wallach and his colleague brought
the computer to life. “Near the end we probably worked a hundred hours a
week,” he remembered. “We fought over every little detail, no holds barred,
and then we’d go out and play bridge.” But then the Navy decided not to
build any more of the machines. “To be quite honest, from day one we
suspected that the Navy probably wouldn’t buy it. It was more that the high-
class consultants came in and said we wouldn’t get it to work. We said, ‘Fuck
that, don’t tell us what we can do.’ ” All in all, Wallach felt pleased about
that piece of work. It was a technical success, he said, and it bolstered his
reputation. Once again, however, his machine did not, as West would say, get
out the door.

Wallach went to Data General a few years later. The bait that lured him
was the promise that he’d get to work right from the start—“on the ground
floor”—on the new, supra-state-of-the-art machine that became FHP. Great
excitement attended the beginnings of this project. The lucky engineers
assigned to it would work on it outside of the plant—in an apartment, for the
sake of security, this was such an important project. There was a meeting. An
executive tossed a set of keys onto the table. They were the keys to the
apartment, and the room number matched the alias of secret agent James
Bond: 007. Wallach liked that touch, but he was most impressed by the fact
that the company would place no important constraints upon the designers of
the new computer. They could pursue pure technical excellence. They were
being given a clean sheet of paper. To himself, Wallach said, “Wow!”

He worked on the grand machine for two years. He read and he studied,
putting the finishing touches on what was already an encyclopedic
knowledge of the best that had been thought and done in computers. Nothing
but the best would be good enough for FHP. He lived for that machine. But
then the unfinished plans and many of the designers went to North Carolina.
Wallach felt he couldn’t go. Thus he lost another machine, the best of them
all so far.

Wallach was one of several engineers who, working day and night,
designed the comely EGO after FHP went south. Then EGO was canceled,
for the first time. Wallach got a few things from his office and stomped out of
Westborough. He went home for two weeks. Around the time that he
returned, DEC announced the VAX. Studying the VAX’s architecture,
Wallach felt sad. Some of VAX’s features were remarkably like EGO’s, but
EGO was better, Wallach believed. He felt very angry. “We had DEC where
we wanted them with EGO.”

It was Wallach who suggested to West the idea for Victor. Wallach
worked on that machine for a time. Victor died gradually. EGO was revived,
and for a little while Wallach really thought that they’d get to build it after
all. But de Castro turned it down again.

Wallach had now spent more than a decade working on computing
equipment. He’d had a hand in the design of five computers—all good
designs, in his opinion. He had worked long hours on all of them. He had put
himself into those creatures of metal and silicon. And he had seen only one of
them come to functional life, and in that case the customer had decided not to
buy the machine.

When EGO-2 got shot down, Wallach went home again, in a rage. Once
more, he stayed away for two weeks, but when he came back, he was still
angry. He got angrier when West suggested that he create the architecture for
a 32-bit Eclipse, because the constraints upon Eagle seemed imprisoning.
Eagle would be backward and messy. What a comedown working on it would
be!

Clearly, however, Wallach was a man who was ready to get a machine out
the door.

The soles of Wallach’s cowboy boots faced his office door. He was
stretched out in his chair, his feet up on his desk. He was slender, not skinny,
with wavy brown hair that was slicked back but still a little unruly. His
complexion was pale, for making computers is an indoor occupation and not
much vitamin D got into the basement. He was in his mid-thirties.

Wallach had his own, real, if windowless office, down the hall from
West’s. It was just like West’s in its skeleton but differently adorned. Here,
enthusiasm lay under less than strict control. Papers lay all over the flat

surfaces. Ferns in pots hung from the ceiling. Stuck with pins to the walls
were cartoons, T-shirts, posters, postcards and, over by the doorway, a brown
paper bag—a joke, the figurative bag on the side of Eclipse given material
shape.

One of Wallach’s posters was a blown-up reproduction of Saul
Steinberg’s droll cartoon depicting the United States: New York City
occupies the entire foreground of the picture; California is awarded a much
smaller, but significant, space in the background; and the states in between
take up about as much room as the lettuce in a club sandwich. Wallach said
he liked this poster for its accuracy. It also made him think of North Carolina,
one of those states that got short shrift in the cartoon. Wallach had been
offered the chance to go south with FHP. Indeed, he had been encouraged to
go. Why had he refused?

“I thought North Carolina sucked,” he explained. “I told them, ‘That’s not
a place where I want to bring up my wife and family.’ I was given a tour of
Chapel Hill and somebody told me that more people per capita read the New
York Times in Chapel Hill than in all the rest of the state. I said, ‘It sounds
like the Warsaw Ghetto you just described.’ Hey, when I wake up in the
morning I want to hear the stock market report on the radio, not the price of
tobacco and hogs. And what they considered good food—I wouldn’t wish it
on my worst enemy.” Wallach sniffs, wrinkles his nose, and then delivers
such lines with his chin forward, as if daring someone to hit it. “I said,
‘That’s not a place where I want to bring up my wife and children.’ ” He
made me laugh. He watched, smiling.

Carl Alsing gleefully related that once, when an engineer in the basement
was describing how rough it had been to grow up in India, Wallach burst in
declaiming that India was easy—that man should have tried growing up in
Brooklyn, where you had to fight your way from one ethnic neighborhood to
another just to get to school.

Wallach remembered that when he was very young, another boy on his
street punched him and he didn’t hit back. His father punished him for this
failure to retaliate. Asked to describe his old neighborhood, Wallach said:
“Let’s put it this way. You learn very quickly that if someone hits you, you
hit them back twice as hard, so they won’t hit you again.”

When I met Wallach, he was living in a residential neighborhood in
Framingham, Massachusetts, in a new and prosperous-looking housing

development. His house was gray and clapboarded in the Colonial style. It
was pretty. Inside, it was immaculate. He sat in his living room on a white
easy chair telling what amounted to old war stories. One concerned an
executive whom Wallach had believed to be an enemy of the Eclipse Group.
Wallach had decided to “play with the turkey’s mind.” For a week, every
time he ran into this man, Wallach would smile at him. The following week,
however, whenever Wallach encountered the man, he would make himself
look sad. Finally, the executive could stand it no longer and asked for an
explanation—which was what Wallach had been waiting for.

“Steve, how come you’re so happy to see me sometimes, and then
sometimes you look like you wish I wasn’t there?”

“I don’t know,” said Wallach. “I’m very moody.”
“Then,” recalled Wallach, “I went into my office, closed the door, and got

hysterical.”
Wallach’s wife overheard this tale. “Steve, that’s terrible,” she said. “I

live with this,” she added, turning to me. But I noticed that she was smiling.
While Wallach was talking in this vein, his four-year-old daughter was

circling the room on roller skates, across the wall-to-wall carpeting.
Considering the whiteness of his chair and his proclivity to battle, I expected
Wallach to yell at her at any moment, but I soon got the feeling that he did
not often raise his voice in anger while at home. When the little girl skated up
behind him and planted a wet, loud kiss on his cheek, Wallach beamed.
“That’s why you have daughters.”

You had to understand the context in which Wallach practiced his martial
arts. His swords were usually technical issues, and he left them at work.
Moreover, in the last few years, he had been sorely provoked. He felt, he
said, “like an animal thrown in a cage.”

In this situation, Wallach allowed, he was a rough customer. On one of his
many visits to North Carolina during the so-called EGO wars, he was
presented with a poster depicting the hideous face of the arch villain of Star
Wars, Darth Vader himself. “We got this just for you,” Wallach was told. He
liked to tell that story.

When FHP’s removal south had been announced, Wallach had felt robbed
and insulted. Then he had felt astonished and dismayed when he had read the
article in the Globe that seemed to have de Castro denigrating the engineers
at Westborough. Wallach called up the reporter. Pretending to be an

important Data General executive, he badgered the fellow into reading his
notes over the phone. On the basis of this conversation, Wallach decided that
de Castro had been quoted out of context. But the story left a bad taste.
Wallach heard the people who were going south with FHP say that North
Carolina was where the action was and would be from now on. He became
convinced that neither the defectors to North Carolina nor de Castro himself
believed that the stay-behinds at Westborough would produce significant
machines in the future. He took the whole affair as a personal insult. “A slap
in the face.” He had to retaliate. Working on EGO was his first attempt to do
so. “Like I said, I’m a fighter, and the challenge was to prove the man in the
corner office and North Carolina wrong.”

In the EGO wars, Wallach served as West’s Hessian. West didn’t feel
angry toward North Carolina, nor could he afford to appear hostile. But
arguments are arguments; certain nasty things had to be said. Wallach was
good at saying them and happy to do it. He served, he said afterward, as
“West’s gun” in the “shootouts.”

But in the end Wallach got beaten. EGO was canceled—not because it
wasn’t a good design, but because it was too good, too much of a threat to
steal the show from North Carolina. West never fully believed this, but
Wallach always did.

When West started talking, after all of that, about building a 32-bit
Eclipse, Wallach sneered—partly because it seemed to him that this was just
the sort of project that North Carolina would have wished on him: an
insignificant, kludgey machine that probably wouldn’t get out the door. He’d
rather stand in honorable defiance than work on such a thing. He was quitting
the fight, he said, and soon he would leave Data General.

Meanwhile, thinking in the fastness of his office, West decided that he
had made a mistake. He had not presented Eagle in the proper light to
Wallach. Over the next few weeks, he had many long conversations with the
reluctant architect. He listened to Wallach’s complaints. He agreed that
Wallach had been treated badly.

“But haven’t you realized yet that the way to prove someone wrong is to
build the right thing?” West asked, time and time again. Finally, somewhat
exasperated, but also suspecting that Wallach was ready to yield, West forced
the issue. “Either you do this or your job description is inoperative,” he said
to Wallach one day.

The phrasing appealed greatly to Wallach, and he could see that West was
probably right. Conceiving architectures was his job and Eagle was the only
project around that needed an architect. But Wallach had seen too many
projects canceled in spite of their merits to believe that Eagle would go out
the door just because it promised to be a good commercial machine. He
wasn’t going that route again. Wallach wanted to talk to de Castro. This was
not a completely extraordinary request; de Castro’s office, Wallach knew,
would usually open for an engineer who had something to say.

As Wallach remembered it later, for those who questioned him about it,
this was the gist of his conversation with the president:

“Can I be straight with you?” asks Wallach.
De Castro nods.
“Okay,” says Wallach. “What the fuck do you want?”
“I want a thirty-two-bit Eclipse,” says de Castro.
“Are you sure? If we do this, you won’t cancel it on us? You’ll leave us

alone?”
“That’s what I want, a thirty-two-bit Eclipse and no mode bit.”
Wallach returned to West’s office, and now, at long last and sniffing, he

said, “Okay, Tom, one more time.”
“The document’s yours,” West replied. “You gotta do it fast.”

Wallach went to his office and closed the door. Some months later, a
careful examination of Wallach’s quarters revealed many scuff marks etched
in shoe polish low down along his walls, and there was a dent higher up on
one wall. These were bruises, left over from Wallach’s labor on the machine.

When he sat down, alone, in his office, Wallach reasoned that since the
whole purpose of this ridiculous undertaking was 32-bithood—the
enlargement of the Eclipse’s logical-address space from 65,000 to 4.3 billion
storage compartments—he might as well begin by figuring out how the
compartments would be organized (“managed”) and the information in them
protected. He further decided—he called this “the methodical engineering
approach”—to worry about memory management first. Clearing a space on
his desk, he placed a yellow legal pad in front of him and drew a picture of
the standard 32-bit address—a box containing 32-bits, which looked like this:

He began to divide up the space inside this box.
If you imagine the computer’s storage—its memory—to be a large

collection of telephones, then what Wallach was doing might be described as
designing a logical system by which phones and groups of phones could be
easily identified—a system of area codes, for instance.

Next to Wallach’s desk stood several tall metal bookcases. Their shelves
from floor to ceiling were stuffed, with loose-leaf binders and fat volumes in
plain covers that bore titles such as Parallelism in Hardware and Software:
Real and Apparent Concurrency. The binders contained specifications for
nearly every sort of computer ever made and for some that had never been
constructed. Wallach called his bookcase “Data General’s de facto library.”
He claimed that he had most of this library in his head. From time to time, he
wheeled around in his chair and took a binder down from the bookcase. By
the end of the day, Wallach had roughed out the divisions of the standard 32-
bit address, and he said to himself: “Okay, great. So far I’ve done nothing.”
He gave the wall near his door a kick as he left.

Wallach wasn’t ready to admit that he was having fun. But he was back in
his office early the next morning. He had a workable general plan for
managing memory. Now for the question of how to protect the stored
information.

This had become one of the important questions in the computer industry.
It had arisen largely because of a practice called time-sharing. In the
basement of Westborough, for example, every engineer had a computer
terminal—typewriterlike keyboard plus video screen—and most of these
terminals were hooked up to a single large Eclipse, located some distance
away, behind one of the locked doors that warned against unauthorized entry.
So long as the central computer didn’t become overloaded, each of the
engineers, at his separate desk, could enjoy the illusion that he alone had
access to the computer, though in fact they were all sharing it. It was a
common sort of system. Much more exotic ones existed. Time-sharing
already took place not only within buildings, but between them and across
continents and oceans. Increasingly, computers communicated with other

computers across vast distances.
Many organizations stored very valuable information in their computers.

In a sense, banks store their money in computer systems, and oil companies
store their crown jewels, their seismic information, in computerized data
banks. Publicized cases of thievery and espionage by computer were legion at
this time; experts generally agreed that most electronic criminals were never
caught and that many who were never got prosecuted, because an
organization that had been successfully attacked either didn’t want the
embarrassing publicity or feared that the news would encourage other raids.

Many people had taken a crack at solving such problems, notably a group
of engineers and computer scientists at MIT who worked with money from
the Department of Defense on a project called MULTICS. In the late sixties,
they produced a complex plan for making time-sharing systems secure. It was
a clever plan. But many experts believed that no system of protection yet
devised could withstand the efforts of smart pranksters or thieves bent on
foiling it. One organization had purchased a very fine system for protecting
its computerized data banks, but a determined group had cracked it.
Pretending to be the manufacturer of the security system, they had sent to the
organization a bogus set of revisions to the system’s software. Without
affecting the system’s performance, these revisions left open a “trapdoor,”
through which the thieves were able to withdraw important information from
the organization’s data bank. The anecdote was one of Wallach’s favorites.
“I’m not gonna try and solve the world’s problems here,” he conceded. He’d
forget about trying to stymie the malicious user and concentrate instead on
preventing accidental damage.

Inadvertently, users of a time-sharing system could alter the contents of
the host computer’s memory and in this way destroy valuable data and foul
up system software. Plans such as MULTICS were workable solutions to this
problem.

Wallach was proceeding almost on instinct now. In his two years of work
on FHP, he believed, he had read every published description of every system
for protection that had ever been devised. In the ordinary case, an architect
might linger over the various possibilities for months. Wallach didn’t have
time for that, and he really didn’t need it. Very quickly, he chose what he
believed to be the simplest and best general solution, the general idea that
came out of MULTICS—which DEC, as it happened, had used in the VAX.

This was a system of “rings.”
Picture an Army encampment in which all the tents are arranged in several

concentric rings. The general’s tent lies at the center, and he can move freely
from one ring of tents to another. In the next ring out from the center live the
colonels, say, and they can move from their ring into any outer ring as they
please, but they can’t intrude on the general’s ring without his dispensation.
The same rules apply all the way to the outermost ring, where the privates
reside. They have no special privileges; they can’t move into any ring inside
their own without permission.

Analogously, each ring defines some part of the computer’s memory.
How does the computer mediate a user’s access to these various areas? In the
general case, it compares two numbers—the number of the ring to which the
user has free access and the number of the ring that the user wants to get into.
If the user’s ring number is smaller than or equal to the number of the ring
that the user wants to enter, the user is allowed to go in. But how should ring
numbers be assigned to the compartments of memory? That was the question
before Wallach.

With the VAX, DEC’s engineers had solved the problems of memory
management and the protection of memory separately. Each compartment in
memory had an address, and each compartment also had a separate ring
number, which was produced and checked by a special set of hardware.
Wallach had studied the specs on VAX. He didn’t like that approach. From
the back of his mind came the recollection of a conversation he’d had at a
conference of engineers from different companies some years before. At such
convocations the usual way of getting acquainted is to ask other engineers
what projects they’ve worked on. Wallach remembered an engineer telling
him about a ring system he’d thought up and never built, in which ring
numbers and addresses were mingled. Wallach had gotten the fellow to send
him a spec; it had looked a little clumsy to him. But there was the germ of
something there. Wallach drew another diagram of the standard 32-bit
address:

The first three bits of the address would contain the segment number of a
memory compartment—in the telephone analogy, a given compartment’s
area code. The other bits would define the rest of the address; but Wallach
wasn’t interested in them just now. He was pondering the first three bits.
Suddenly, without thinking about it, he was drawing another box below the
first box. The diagram now looked like this:

The segment number—the area code—would be the same as the ring
number, which defined the level of security to which the compartment would
be assigned. Three bits can be combined in eight different ways. So there
would be eight rings (eight levels of security) and eight segments (eight area
codes) in the memory system. The area codes would themselves indicate
which ring was forbidden to whom.

Although they are generally shy about claiming to have had one,
engineers often speak of “the golden moment” in order to describe the feeling
—it comes rarely enough—when the scales fall from a designer’s eyes and a
problem’s right solution is suddenly there. The chief virtue of Wallach’s
scheme was its simplicity. It would be relatively cheap and easy to implement
in hardware and software, and it should work efficiently and reliably. When
Alsing saw Wallach’s brief description of the plan, he said to Wallach,
“That’s nice.” Later, out of Wallach’s earshot, he said more. “Rings have
been around. They’re old hat. What makes Wallach a good Data General
engineer is that he came up with a really elegant subset of those ideas—
simple, sweet, cheap, efficient, clean. And I can’t believe I just said that
about Wallach.”

As for Wallach, after he had drawn the diagram, he stared at it, wondering
for a moment, “Where did that come from?”

He kept eyeing it. “That looks pretty cool.”
For the next couple of days Wallach played with the idea, until he was

sure it would work. Then he pulled his computer terminal in front of him and
wrote up a memo, which told how others had handled memory management

and protection in the past and which described his own general scheme. Near
the end of the memo, his sarcasm rose. He described the plan as a kludge, but
a better one than DEC had put into VAX. He kicked his walls a few times.
The idea of placing that neat, clean structure on top of the outdated structure
of the Eclipse repelled him. It was as if he had invented a particularly nice
kind of arch for the doorway of a supermarket.

Wallach was a scholar of computer architectures. He knew by heart the
works of the Michelangelos, the Frank Lloyd Wrights and the Gaudis of the
computer profession. He imagined himself standing in front of a roomful of
experts when Eagle was all done. They would question him about the
architecture, inserting sharp little knives in his flank and then twisting them.
“Why didn’t you do it this way, Steve, when it’s obviously better?” And, as
he imagined it, his only possible defense would be to plead weakly and
traitorously that the company had prevented him from really showing his
stuff.

The cause of this fretting lay mainly with the “instruction set.” These are
the basic operations that the computer’s builders equip it to perform.
Typically, instructions bear such names as ADD, which means the computer
should perform addition, and Skip On Equal, which tells the machine to
compare two values and if they are equal to skip the next step in a program.
Today, there are a couple hundred instructions or so in most minicomputers’
sets. A large part of the art of designing a computer’s architecture lies in
selecting just the right set of instructions and in making each instruction as
versatile as possible. This art had advanced a great deal since the invention of
the Eclipse. But in order to be fully compatible with Eclipses, Eagle would
have to contain the same old instruction set in its entirety. DEC had not tried
to do that. VAX was not fully compatible with DEC’s old 16-bit machines.
DEC had given up full compatibility for the sake of giving VAX what
Wallach called a wonderful—a “super”—instruction set. He was somewhat
biased. EGO’s instruction set had resembled VAX’s. Both were examples of
the state of the art. The Eclipse’s instruction set was an example of what that
state used to be.

For many months, Wallach would continue to mourn EGO outwardly and
to tell anyone who was interested that if some expert asked him someday why
he hadn’t invented a better instruction set, he would spill the beans. He’d tell
them he had been forbidden to use a mode bit. “I’ll say it was because I was

told that these were management’s objectives and I was told that I couldn’t
work on the machine if I wouldn’t fit in with management’s objectives.” But
in his own mind, he was changing his tune. He was getting to like the looks
of this architecture. He was starting to think of it not as a wart on a wart, but
as a clean design with a wart on it. The wart was the Eclipse instruction set,
virtually every part of which Eagle would have to contain, for the sake of
compatibility. But there were some other empty corners of this canvas, aside
from memory management and protection—chiefly, the new 32-bit Eagle
instructions. Wallach came up with some that he liked a great deal. In fact, he
even found a way to slip in a well-disguised equivalent of a mode bit—which
would have allowed him to define a wholly new set of Eagle instructions,
ones not at all derivative of Eclipse. But he didn’t disguise the mode bit well
enough. West found him out. “We’re not gonna do that,” he said to Wallach.
Wallach went back to his office and punched the wall near his door.

But West did let his adjutant put into Eagle some new instructions that
weren’t Eclipse-like. Not all the ideas for new instructions came from
Wallach, but sometimes it worked this way. They developed a routine.
Wallach would bring West an idea for a new instruction. West would say that
it looked like a win, but that it wasn’t Eclipse-like. Wallach knew what that
meant. If the wrong people saw this new instruction in the spec, it might
cause a stir. People upstairs and in North Carolina might get the idea that
Eagle was, after all, intended as a challenger to FHP—which it certainly was.
So Wallach would take the idea for the new instruction to friends working in
System Software, and the system programmers would approve the idea. They
and Wallach would sit down and fully define the new, non-Eclipse-like
instruction, and then Wallach would ask them to write a memo to the Eclipse
Group, requesting that this instruction be put into Eagle. “They wrote the
memo,” said Wallach, “so that the idea would be perceived as coming from
them, just in case we ever got called on it.” Wallach went on: “A lot of things
we did were unique to that environment. It’s clear they weren’t always the
way things should be done.”

“But you enjoyed doing things that way?” I suggested.
“We all enjoyed it,” he said. “Anytime you do anything on the sly, it’s

always more interesting than if you do it up front.”
After his discovery of the basic scheme for memory management and

protection, Wallach had to work out the details, in many long and sometimes

loud arguments with Ken Holberger, sublieutenant of the Hardy Boys, who
were going to have to implement the architecture. For technical argument,
Wallach found Holberger to be a worthy adversary, and on the whole he
enjoyed those debates.

Next, all of the instructions had to be defined, as did the precise
mechanism by which Eagle would move smoothly, and without the
intervention of the user, from programs written for 16-bit Eclipses to ones
made for a 32-bit machine. This was a tricky, time-consuming piece of work.
Wallach also had to collect all these details and schemes in a document. He
took great pains with this volume. He called it “my book,” and refining it,
rewrote it seven times over the following months. This book was some two
hundred pages long, and at the beginnings of each chapter he placed a famous
or semifamous quotation.

Wallach said he never read technical tracts outside of work and that he
shared West’s suspicions about people who did. At home, he said, he mainly
read Playboy. “I read the short stories. I really do! Yeah, I look at the
pictures, but I like the stories.” He laughed. He had not read widely in the
classics. So the epigraphs for his book didn’t come to him without effort. He
took the quotes from Victor Hugo, Nietzsche, Shakespeare, T. S. Eliot,
Santayana and FDR. Some were playful and some downright witty, if you
understood the context. At the top of the chapter about the instruction set, for
instance, he placed this quote from Macbeth:

We still have judgement here; that we but teach
Bloody Instructions [Wallach’s cap.], which, being taught, return
To plague the inventor.

For the chapter about his elegant scheme of memory management, he
chose these verses from Tolkien’s Lord of the Rings:

It cannot be seen, cannot be felt
Cannot be heard, cannot be smelt,
It lies behind stars and under hills
And empty holes it fills.

Wallach spent about twenty hours in the Framingham Public Library, with
his nose in Bartlett’s Familiar Quotations and dipping into some of the actual
works, just in order to add these flourishes to his spec. They added
something. They revealed the class of feelings that Wallach brought to his
job. If he was a Hessian, he was a passionate one, and with the quotations he
signed his name to his piece of the new computer.

Wallach actually spent far more time looking up epigraphs than it took
him to discover the right way to manage and protect the computer’s memory.
But that small golden moment colored everything else for him. As he saw it,
the rest of the plan simply unfolded from that one idea. It was a good omen.

How do such moments occur? “Hey,” Wallach said, “no one knows how
that works.” He remembered that during the time when he was working on
the Navy computer for Raytheon—the one that got built and then scrapped—
he was at a wedding and the solution to a different sort of problem popped
into his mind. He wrote it down quickly on the cover of a matchbook. “I will
be constantly chugging away in my mind,” he explained, “making an
exhaustive search of my data bank.”

5

MIDNIGHT PROGRAMMER

IT WAS THE HOUR of insomniacs. In the basement of Westborough, the
corridors and cubicles stood empty and in shadows. Carl Alsing’s cluttered
little area made a small rectangle of light. Strewn before me across the
surface of his desk, like the relics of a party, lay dozens of roughly drawn
maps. They consisted of circles, inside of which were scrawled names such
as Dirty Passage, Hall of Mists, Hall of the Mountain King, Complex
Junction, Splendid Chamber, Bedquilt, and Witts End. Webs of lines
connected the circles, and each line was labeled, some with points of the
compass, some with the words up and down. Here and there on the maps
were notations—“water here,” “oil here,” and “damn that pirate!” In the
midst of all this paper sat Alsing’s computer terminal. On the screen of the
tube in white letters, like the little voice that whispers in a wild gambler’s ear,
this message stood:

ARE YOU SURE YOU WANT TO QUIT NOW?

Alsing had offered to demonstrate “midnight programming,” and now,
early in the winter of 1979, he had made good on the promise. He was sitting
beside his desk with his hands folded, wearing his soft, sneaky smile. For
hours, he had been watching me play the game Adventure. “You really got
into it,” he said. “That’s good.”

When first invented, the program for Adventure had traveled widely, like
a chain letter, from coast to coast among computer engineers and buffs. It had
arrived in Westborough just in time for the aftermath of the EGO wars. It was
everywhere by now; grade-schoolers were playing it.

In the game, the computer appears to create for you an underground

world, called Colossal Cave. It moves you through it in response to your
commands. The computer seems to act as game board, rule keeper and, when
you foul up, as both assistant and adversary. You move by typing out
directions on the keyboard at your terminal. If you spell out these directions
in full a few times, a message will appear on your screen, saying:

IF YOU PREFER SIMPLY TYPE N RATHER THAN NORTH

“How did the computer know to do that?”
“I don’t know,” said Alsing, coyly. “Sometimes it’s perceptive, other

times just dumb.”
After you have moved, a message appears on the screen telling you where

you are and what you are confronting. You must respond, in two words or
less, both to opportunities—treasure or tools lying on the floor of some
chamber—and to threats and challenges—the hatchet-hurling dwarf, the
snake, the troll who guards the bridge, the dragon. If, for instance, you want
to get past the rusty door in one of the chambers, you have to think of what
will conquer rust, then you have to remember where it was you saw that pool
of oil, then you have to type in step-by-step instructions to get back to that
oil, and then, because the computer will let you carry only so many things,
you may have to drop one of your tools or treasures—DROP GOLD COINS,
you might write—and then type in, TAKE OIL. Of course, you must already
be holding a container for the oil. Then you have to retrace your steps back to
the rusty door and type, OIL DOOR. This method of travel and maneuver
takes some getting used to, but after a while it’s as easy as driving a car. The
game is a harrowing of Hell.

Earlier that night, traveling more or less at random and without maps, I
had stumbled into a place that the message on the screen described this way:

YOU ARE IN A MAZE OF TWISTY LITTLE PASSAGES, ALL
DIFFERENT

So I typed, NW, in a hurry, hoping to get out of there by going back the way
I’d come. But the screen responded:

YOU ARE IN A TWISTY MAZE OF LITTLE PASSAGES, ALL
DIFFERENT

If you are susceptible to Adventure, you get worried at this point. I had
the feeling I was lost in a forest, and I acted as no smart woodsman would,
heading off in this direction, then heading off in that, and getting nowhere.

Then I heard Alsing chuckle. “Ahhh, I love it.”
I thrashed around in that maze awhile longer. Finally, Alsing said, “Look

carefully at the messages on the screen.”
“They’re all the same.”
“No, they’re not.”
Each chamber of this maze within the big labyrinth had a slightly different

and unique address, formed by a particular arrangement of the words twisty,
little, passages, and maze.

“And what do you do when you get lost?” asked Alsing.
“You make maps, of course.”
Alsing sat back and nodded, smiling—the complacent schoolmaster, one

of the roles he played at the beginning of Eagle.
Later on, though, I wandered into a maze that really scared me.

YOU ARE IN A MAZE OF TWISTY LITTLE PASSAGES, ALL
ALIKE

You have to find your way around this maze if you hope to begin to master
Adventure, because this one contains the vending machine with the batteries
for your indispensable flashlight and, moreover, harbors the lair of the
kleptomaniacal pirate who is forever sneaking up behind you and snatching
away your treasures. But how do you find your way around a maze in which
all the chambers are the same? You must do what Hansel and Gretel tried to
do, more or less—drop something on the floor of every chamber to leave a
trail marking where you’ve been.

That isn’t the worst maze, however. You can get caught in Witts End and
think that you’ll never get out. Some of the engineers at Westborough who
had come close to mastering the entire game believed that the only way out
of Witts End was to tell the computer you want to commit suicide—AXE

ME. That works; you get reincarnated shortly afterward. But you lose points;
suicide isn’t the best solution.

I myself did not get as far as Witts End, however, but quit while in the
maze that was all alike. And though the computer seemed reluctant to let me
go—DO YOU REALLY WANT TO QUIT NOW?—I stood firm. Alsing got
up and led the way toward the cafeteria. He got us lost in the corridors of the
basement. No doubt that was his plan, though he denied it. Intentional or not,
our getting lost allowed him to cry out, “The twisty little passages of Data
General!”

It was the time of night when the odd feeling of not being quite in focus
comes and goes, and all things are mysterious. I resisted this feeling. It
seemed worth remembering that Adventure is just a program, a series of step-
by-step commands stored in electrical code inside the computer.

How can the machine perform its tricks? The general answer lies in the
fact that computers can follow conditional instructions. They can take two
values and compare them—that comes down to simple arithmetic—and, if so
commanded, can perform one action if the values are equal and another if
they are not. In this ability to follow conditional instructions—an ability built
into the machine—lies much of the computer’s power. You can set before it,
in sequence, bifurcating webs of conditional instructions, until the machine
appears to make sophisticated decisions on its own.

When we had returned from our adventure finding coffee, I asked Alsing
how he felt about the question—twenty years old now and really unresolved
—of whether or not it’s theoretically possible to imbue a computer with
intelligence—to create in a machine, as they say, artificial intelligence.
Alsing stepped around the question. “Artificial intelligence takes you away
from your own trip. What you want to do is look at the wheels of the machine
and if you like them, have fun.”

To the two computers that the Eclipse Group used, the engineers had
given the names Woodstock and Trixie, after characters in comic strips. They
often spoke about these computers as if they had personalities. When
especially frustrated, one Microkid would walk into the lab where Trixie
resided and yell at the machine. Alsing said: “A lot of people are really tired
of anthropomorphizing computers, but it sure is an easy way to talk about
them. You can anthropomorphize your car and the analogy works, and then at
some level it doesn’t. We anthropomorphize big business, the military and so

on, as some strange creatures with alien personalities. I think that’s sane, I
think that’s normal. You tend to have to anthropomorphize the computer. It
presents a face, a person to me—a person in a thousand different ways.”

He drew his chair up to his terminal and typed a few letters—a short code
that put him in touch with Trixie, which was the machine reserved for the use
of his microcoding team. “We’ve anthropomorphized Trixie to a ridiculous
extent,” he said.

He typed, WHO.
On the dark-blue screen of the cathode-ray tube, with alacrity, an answer

appeared: CARL.
WHERE, typed Alsing.
IN THE ROAD, WHERE ELSE! Trixie replied.
HOW.
ERROR, read the message on the screen.
“Oh, yeah, I forgot,” said Alsing, and he typed, PLEASE HOW.
THAT’S FOR US TO KNOW AND YOU TO FIND OUT.
Alsing seemed satisfied with that, and he typed, WHEN.
RIGHT FUCKING NOW, wrote the machine.
WHY, wrote Alsing.
BECAUSE WE LIKE TO CARL.
One of Alsing’s Microkids had programmed Trixie to deliver these

impertinent responses. In a real sense, Alsing was conversing with a member
of his team. I think—one of them said as much—that if the Microkids’
computer had ever started talking back to them all on its own, they would
have ripped its wires out.

Anthropomorphizing Trixie was just a game, and by no means the most
sophisticated that Alsing played with his team. They were the imps of the
Eclipse Group and their computer showed it.

Assembled from the comments of a few of the young men on the team,
the typical engineer, an imaginary creature perhaps, wears a white undershirt
and a plastic pouch (known to some as a “nerd pack”) in his breast pocket, in
order to keep his pens from soiling his clothes. An electronic calculator—
used to be a slide rule—hangs like a ring of janitor’s keys from his belt. Jim
Guyer of the Hardy Boys, who wore a beard and drove a large motorcycle,

added, “A lot of people think that an engineer is shut off in a little corner and
doesn’t give a damn about anything else except his own little thing,” Guyer
said. “They exist. And they’re the most obvious engineers, because in their
isolation they’re obvious.”

When first encountered, Alsing might seem to fit this description. He
could be taken for one accustomed to dark corners. In this respect, as in
others, he is deceiving.

Alsing is tall, over six feet, but he doesn’t seem to realize it and he doesn’t
look that big. He is neither fat nor thin. He keeps his hair cut fairly short.
Often his dress looks sloppy—not deliberately or extremely so, but slightly
careless. He speaks softly, as a rule, and the pitch of his voice, though not at
all squeaky, is high. About his hands, the way he folds them in his lap or puts
them together under his chin, there is something delicate. One acquaintance
of his said, “He looks uncoordinated.” In fact, Alsing does not play many
physical games, though on a vacation in the Caribbean he took up scuba
diving. Ham radio is an old hobby of his. I thought that I could see in him the
lonely childhood behind him—he would have been the last boy picked in
every schoolyard game, the one who threw a ball like a girl. But Alsing is
gregarious. He set out some years back to master social gracefulness, and it
shows. He will sit down in a strange living room, fold his hands neatly in his
lap, and listen. You can forget that he is there, until gradually, so delicately
you hardly notice, he enters the conversation. After several such occasions,
people who had just met Alsing said to me, “He’s really smart and
interesting, isn’t he?”

By the time the Eagle project began, Alsing had attained the age of thirty-
five, which made him very elderly within the group—but he was a clever and
playful old codger. His eyes would dart around. His eyebrows would dance;
they’d do his winking for him. When he’d close his mouth and let a little
smile creep across his cheeks—in each one was carved a line in the shape of
a half-moon—then it was time to be on guard, for a game, a trick or a joke.

Alsing’s childhood did not leave him with an abundance of sweet
memories. Discovering the telephone was one of his fondest. When he was
eight and in third grade, his family moved from central Massachusetts to
Evansville, Indiana. He loathed that place. “I was smaller, paler, weaker, less
rugged and I had a funny accent. I remember discovering in third grade that
there was a pecking order—‘Hey, there’s a pile and I’m on the bottom of it.’ I

was a very depressed kid in third grade.” He vividly recalled the day when he
skipped recess, usually a painful event for him anyway, and instead worked
at his desk on the design of a telephone. He wanted to find out how the thing
could possibly capture a voice. It seemed to him an improbable instrument,
one that shouldn’t work. He read about telephones in several encyclopedias.
Then he took the family phone apart. Finally, he figured it out to his
satisfaction. “This was a fantastic high, something I could get absorbed in
and forget that I had these other social problems.”

One day, while at home in Evansville, he was prowling around the
basement and noticed wires running across the ceiling of the coal bin. He
traced them back to the phone upstairs. He got ahold of some batteries, an old
microphone and an ancient set of earphones, and from the coal bin—sitting
there all alone in the grime, with the earphones on—he tapped the family’s
telephone. Once in a while, he accidentally short-circuited it, but his father,
an engineer for Westinghouse who designed refrigerators, was indulgent on
that score.

Some years later, Alsing’s family returned to New England, and he
enrolled at the University of Massachusetts. He made mostly poor marks.
Then, in his junior year, he took a course in the theory of digital circuits. It
entailed, as such courses always do, the study of Boolean algebra. Alsing’s
world was never the same after that. Fathoming this algebra, Alsing felt as
some children do when all at once they know how to read. Boolean algebra
was something that made perfect sense, and thus it was a rare commodity for
him. He called it beautiful.

At the heart of the computer lies a device made up largely of transistors.
Engineers call this device a gate, and the analogy is apt. You might think of it
as a newfangled, automatic barnyard gate in an electrical fence. If the gate is
closed, current flows through it along the length of the fence; but the current
stops at the gate when it stands open. You open and close this gate by
sending signals to it down two or more (let’s say it’s two) control wires.

How can you add two numbers together with electricity? For Alsing, the
question had the force of those that the telephone had long ago aroused in
him. You assumed, first of all, that you were going to do your adding in
binary arithmetic. It was simple, once you got the hang of it. You can count
as high as you like in binary, but you use only the integers 0 and 1. The zero
of the familiar decimal arithmetic is 0 in binary, and the one in decimal is

also 1 in binary; but two in decimal is 10 in binary, three is 11, and so on.
Next, you let a high voltage represent the binary integer 1 and a low

voltage represent the binary integer 0. Then you build a gate, which for all
practical purposes is a binary device: it’s either opened or closed. When
opened it passes on a low voltage, which stands for 0; closed, it passes on the
symbol for 1. What’s crucial is how this gate responds to signals from the
two wires that control it. You can build your gate in such a way that it will
close and pass on the electrical symbol for a 1 if, and only if, one of its
control wires sends it a 1 and the other sends it a 0. A gate built this way thus
will add 0 and 1 and yield the right answer every time.

But if you want to add 1 and 1 and get the right answer, which is binary
10, then you have to modify your circuit, and if you want to add large
numbers together, you have to build a large array of gates and control wires.
Suppose you want to build an adder that can combine two 32-bit packets. The
diagram for such a circuit looks forbiddingly complex. How can you be sure
that for every possible set of signals you put into this circuit, it will produce
just the right pattern of opened and closed gates to yield up the right answer?
You need a set of rules. Boolean algebra, for instance.

Conventional algebra sets rules about the relationships between numbers.
Boolean algebra expresses relationships between statements. It is a system of
logic; it sets general conditions under which combinations of statements are
either true or false. In this sense, it is a binary system. What Alsing studied
was in fact a simplified form of Boolean algebra, one that had been tailored
to digital circuits. “If, and only if, A is true AND B is true, then their
combination is also true”—that is one of the statements of the algebra. There
are others, and it turns out that gates can be built so that they behave
precisely according to these statements. Indeed, the kinds of gates are named
for the Boolean statements that they mimic; there are, among others, AND
gates, NAND gates, OR gates, NOR gates. Boolean algebra provides one
systematic way for engineers to design their circuits. It is less important for
that purpose than formerly, but it was a crucial tool in Alsing’s college days.

The time was the middle sixties. The computer was a famous and closely
held marvel; the day had not arrived when curious undergraduates could buy
the parts and figure out the thing by building one themselves. But here, in the
course that Alsing took, lay the secret of the machine. “It was so simple, so
elegant,” he said. He got an A in that course. So he took a course in how to

program a computer by using a high-level computer language called
FORTRAN, which was developed for scientists mainly. Alsing got an A in
that. He flunked everything else—because of an actual computer.

It was an IBM machine, archaic now but gaudy then. The university
owned it, in effect, and it lay inside a room that none but the machine’s
professional caretakers could enter during the day. But Alsing found out that
a student could just walk into that room at night and play with the computer.
Alsing didn’t drink much and he never took any other drugs. “I was a
midnight programmer,” he confessed.

During the first nights after he learned to write a computer program,
Alsing would go off from the computer room and search the empty building,
looking for a classroom with a blackboard and some chalk. He posed
problems for himself and on the blackboard wrote up little programs for their
automatic solution. Then he hurried back to the computer to try out his
programs on the machine. That was what made it fun; he could actually touch
the machine and make it obey him. “I’d run a little program and when it
worked, I’d get a little high, and then I’d do another. It was neat. I loved
writing programs. I could control the machine. I could make it express my
own thoughts. It was an expansion of the mind to have a computer.”

About ten other young, male undergraduates regularly attended these
sessions of midnight programming. “It was a whole subculture. It’s been
popularized now, but it was a secret cult in my days,” said Alsing. “The game
of programming—and it is a game—was so fascinating. We’d stay up all
night and experience it. It really is like a drug, I think.” A few of his fellow
midnight programmers began to ignore their girlfriends and eventually lost
them for the sake of playing with the machine all night. Some started
sleeping days and missed all their classes, thereby ruining their grades.
Alsing and a few others flunked out of school.

In a book called Computer Power and Human Reason, a professor of
computer science at MIT named Joseph Weizenbaum writes of a malady he
calls “the compulsion to program.” He describes the afflicted as “bright
young men of disheveled appearance, often with sunken, glowing eyes,” who
play out “megalomaniacal fantasies of omnipotence” at computer consoles;
they sit at their machines, he writes, “their arms tensed and waiting to fire
their fingers, already poised to strike, at the buttons and keys on which their
attention seems to be as riveted as a gambler’s on the rolling dice.” Was this

a portrait of Alsing playing with that old IBM?
In order to explain the hold that machine once had on him, Alsing had

insisted that we confront Trixie late at night. As if preparing for a journey or
an execution, we had dined well that evening. And when we’d gotten to the
basement, he’d decided to start me on the way to addiction with small stuff—
that is, with Adventure. I’d played and played. One by one the night owls of
the basement—and there were many in the Eclipse Group then—had
departed. I’d kept on playing.

When I finally quit, I felt weary in my bones. I was actually sweating; my
shirt stuck to my back. Things around me kept going in and out of focus. I
looked at Alsing, and the rims of his eyes were red. He said he could
remember experiencing weariness like this during his midnight-programming
days, but he had been younger then. Weariness had been a badge and part of
the fun. Some of his cohorts had suffered, it was true. “But college kids are
vulnerable. They can get taken down by girls, or drink, or by programming.”
As for him, he felt that he had gained far more than he had lost.

Up until that year when he discovered the machine, his life, every way he
had looked at it, had seemed chaotic. He had done fairly well in a course in
psychology, but in nothing else. He had proven to himself that he was an
inveterate failure. Now, finally, he felt truly interested in something. He left
college for a year. When he came back, he took a number of courses in
electrical engineering and became a straight-A student. He took a job with
DEC when he graduated, then went to Data General, partly because he
thought it would be a lively place to work; he got that idea from the famous
first ad and from the angry talk about Data General he heard in the hallways
at DEC.

At Data General, the number of your security badge reflects your
longevity: the lower the number, the longer your service. By 1979 new
employees were receiving badges numbered in five figures. Alsing wore
number 150, which was low enough to confer upon him some status and, he
thought, perhaps a measure of security. According to several stories, de
Castro had shown a special loyalty toward those who had joined his company
early on and stayed. At Data General, Alsing became a microcoder. In fact,
he was Data General’s first and most prolific one.

Most new microcoders, on their first job, have the odd feeling that what
they’re doing can’t possibly be real. “I didn’t fully believe, until I saw it

work, that microcode wasn’t just a lie,” said Alsing’s main submanager,
Chuck Holland, remembering the first code that he wrote. At the level of the
microcode, physical and abstract meet. The microcode controls the actual
circuits.

A stairway of sorts leads down into a computer. At the top stand the high-
level languages. A number of these exist, and more are on the way all the
time. They vaguely resemble human languages, and they remain the same no
matter what computer a programmer uses. Alsing wanted me to write a little
program in the high-level language called BASIC, which resembles a pidgin
English. In one part of my program I ordered a simple division of two
numbers, a command that in BASIC is represented by a slash: “/”. I typed the
program into Trixie via Alsing’s terminal. What happened to the “/”?

Inside Trixie’s storage system lay a number of programs called
interpreters. There was one for BASIC, and that interpreter program worked
on my high-level program. Actually, the interpreter gave Trixie instructions
as to how to begin translating my program into instructions that Trixie’s
circuits could respond to. Computers compute in order to compute. The
interpreter for BASIC had Trixie translate the “/” into so-called assembly
language.

It is commonplace today for programmers to stick exclusively to high-
level languages and never look inside their machines. Alsing felt that they
were missing something. He remembered learning assembly language during
his time of midnight programming. “It was neat to learn it. I could skip the
middleman and talk right to the machine. It was also great for me to learn that
priestly language. I could talk to God, just like IBM.” Written down outside
the machine, assembly language is a list of mnemonics, such as ADD, Skip
On Equal, and so on. It contains the names of all the roughly two hundred
basic operations that Trixie can perform. Instructions, these operations are
called. Inside the machine, these instructions exist, of course, in the form of
electrical charges. No single instruction in Trixie’s set was equivalent to the
“/”. The “/” became a series of several discrete instructions.

Not many years before, in most computers, the “/”, once it had been
translated into its constituent assembly-language instructions, would have
been fed right into the actual circuits. A computer in which the stairway ends
there, at the level of assembly language, is said to be “hard-wired.” It has
circuits especially designed to perform each basic operation in the machine’s

instruction set. But by the seventies—again, in most computers—assembly
language no longer went directly to the circuits, but was itself translated into
another language, called microcode.

For each assembly-language instruction there exists a microprogram, and
most microprograms consist of several microinstructions. Each of Trixie’s
microinstructions, in turn, consists of 75 bits. Seen written on a page, a
microinstruction is a string of 0’s and 1’s. These correspond directly, of
course, to strings of high and low voltages stored in a special place inside the
computer—a “microstorage” compartment. Each string of 75 bits is divided
into portions, and each portion is destined for some part or parts of the
machine’s circuitry. The 75 bits of each microinstruction are the actual
signals that will make the gates in the circuits open and close in just the right
patterns. So my “/” became a linked list of, let’s say, 10 assembly-language
instructions, each of which became a microprogram, each of which consisted,
on the average, of 3 microinstructions, each of which consisted of 75 bits.
The simple “/” was now platoons of signals, which were sent out one after the
other, causing Trixie’s circuits to take the two numbers I had provided for
division, to translate these numbers into electrical code, to determine which
was to be divided by which, to run the now encoded numbers through the
Arithmetic and Logic Unit in such a way as to divide them (a labyrinthine
passage itself), and to put the answer somewhere for the next step in my
program. Actually, far more microsteps than that occurred. Indeed, the
physical machine responds only to microcode. It was microcode, at bottom,
that caused Trixie to translate my “/” into microcode. In this sense, the
computer chases its tail.

Since I’d asked for it, the result of this one operation in my little program
—the quotient of my division—returned through another complex process, at
the end of which it appeared on the screen of Alsing’s cathode-ray tube in the
form of a decimal number. The entire journey, from the moment when I
ordered that the program run, to the time when the answer to the division
appeared, occurred in an imperceptible moment, no more noticeable than the
time it takes for a light to go on after its switch is thrown. But the speed
seemed less impressive than the sheer volume of action that had occurred. I
had this small revelation: division was, after all, the name of something
intricate.

Some modern computers, most notably the machines of Seymour Cray,

remain hard-wired; they respond directly to the electrical equivalent of
assembly language. Microcode just makes the language more specific.
Microcode is, in this sense, like early Old English, in which there was no
word for fighting and a poet who wished to convey the idea of battle had to
describe one.

The chief advantage of microcode is flexibility, which accrues mainly to
the builder of computers. If, for instance, unforeseen defects crop up after a
machine has gone to market—and this almost always happens—the
manufacturer can often repair them without changing printed-circuit boards.
Often the microcode can be altered instead, at considerably smaller cost.
Eagle would be designed to make such changes especially cheap and
painless. The code would exist on a so-called floppy disk, like a 45-rpm
record, not in unalterable ROMs inside the machine. Each morning, when
starting up the computer, the operator would play the disk into the circuits of
Eagle’s microstorage compartment. If the code had to be changed, the
engineers could merely change the floppy disk and send a new copy to
customers.

Writing microcode, however, is no simple task. The code is by definition
intricate. To make the machine execute just one of its two hundred or three
hundred basic instructions, the coder usually has to plan the passage of
hundreds of signals through hundreds of gates. Limited storage space forces
the coder to economize—to make one microinstruction accomplish more than
one task, for example. At the same time, though, the coder must take care that
one microinstruction does not foul up the performance of another.

Alsing had written fat volumes of microcode, in an extremely quirky way.
The Eclipse was to be Data General’s first microcoded machine. Alsing
signed up for the job—there was signing-up in those days, too—and then he
procrastinated. Month after month, his boss would ask him how the code was
coming along and he would say: “Fine. A few problems, but pretty well.” In
fact, though, he had not yet written a single line of code. Finally, he could
sense that his boss and some of his colleagues were growing angry; failure
had become an almost palpable object—a pair of headlights coming toward
him down the wrong side of a road. Scared, he packed up the necessary
circuit diagrams, specs and manuals and went to the Boston Public Library.

The Eclipse contained 195 assembly-language instructions, which in the
end Alsing encoded in some 390 microinstructions, many of which

performed multiple duties. He said he wrote most of those microinstructions
in two weeks at the library. Perhaps it really took him less; West believed that
Alsing did it all in two days and nights. “Without question he did,” West
insisted.

It was always this way with Alsing. The summer before the Eagle project
began, he was assigned to write the code for a new Eclipse. As usual, he
stalled, and when he felt that he was about to get in trouble, he went home
with an armful of books.

He lived about fifteen miles from Data General, in a new ranch house.
“My microporch,” he said, showing me into a small screened porch. We
looked out on a nearby grove of white pines and smelled the needles on the
floor of the woods. The room contained a bright green outdoor carpet, an
electric grill for barbecues, some uncomfortable-looking wrought iron chairs
and a table with a glass top. That summer, he had asked his wife to keep his
three sons away from there for a while, had deposited his manuals on the
tabletop, and had started to think. Again, he did the entire job in a rush, and
finished in about two weeks. “A quick hit,” he said.

Much of the engineering of computers takes place in silence, while
engineers pace in hallways or sit alone and gaze at blank pages. Alsing
favored the porch and staring out at trees. When writing code, he said, he
often felt that he was playing an intense game of chess with a worthy
opponent. He went on:

“Writing microcode is like nothing else in my life. For days there’s
nothing coming out. The empty yellow pad sits there in front of me,
reminding me of my inadequacy. Finally, it starts to come. I feel good. That
feeds it, and finally I get into a mental state where I’m a microcode-writing
machine. It’s like being in Adventure. Adventure’s a completely bogus
world, but when you’re there, you’re there.

“You have to understand the problem thoroughly and you have to have
thought of all the myriad ways in which you can put your microverbs
together. You have a hundred L-shaped blocks to build a building. You take
all the pieces, put them together, pull them apart, put them together. After a
while, you’re like a kid on a jungle gym. There are all these constructs in
your mind and you can swing from one to the other with ease.

“I’ve done this in short intervals for a short period each year. There’s low
intensity before it and a letdown at the end. There’s a big section where you

come down off it, and sometimes you do it awkwardly and feel a little
strange, wobbly and tired, and you want to say to your friends, ‘Hey, I’m
back.’ ”

If simplicity is elegance, then Alsing’s code for the Eclipse was a kludge.
It was full of tricks and subtleties—but for a purpose: he had at his disposal a
severely limited storage space. And his concoction worked well, in the end. It
takes no imagination to see, however, that for someone trying to manage the
invention of a computer, Alsing’s style could provoke nightmares. Afterward,
when the first Eclipse was sent to market, Alsing felt proud. “I did a damn
good job,” he told himself. He received what he still felt was a touch of glory.
He was asked to attend the conference at which the company’s salesmen were
briefed about the new machine. Grinning, Alsing remembered one of the
executives saying to the salesmen, “Okay, here’s your brochures. You can
jack off to them on the plane home.” Alsing was asked to say a few words.
The salesmen applauded. “That was pretty rich stuff to me, coming out of the
cellar and receiving all that fame and attention.” But his habit of putting off
the creation of his code until all was almost lost probably did hurt him.
During his months of procrastination, he wondered why he couldn’t get down
to work and came to believe that he was simply lazy, and he guessed that he
let it show in little ways—an averting of the eyes, a slump in the shoulders.
And partly because of that, perhaps, and certainly because of the anxiety he
created, he did not receive a substantial gift of stock for his work on the
Eclipse, although some other engineers got tidy rewards.

One time West happened to mention Alsing’s name to an executive
upstairs, and the executive said, “You know, it’s funny, but when you think
about it, Alsing’s written just about every line of microcode that’s come out
of Data General.” Alsing did make himself easy to overlook. By his own
account, he deliberately obscured himself in West’s shadow. He went to work
for West, he said, after West took over the Eclipse Group, largely because he
felt that it would be safer to stand on West’s side than not. West, almost
overnight, had become formidable. For Alsing, West represented a buffer and
a shield. He had some other reasons, though, for signing up to help West on
the Eagle project.

Kludge made Alsing imagine a wheel built out of bricks, with wooden
wedges in between them; such a thing might work, but no sane engineer
would be proud to have designed it. Alsing tended to agree with those who

maintained that Eagle must, by definition, be something of a kludge. He did
believe it when West said that Eagle could put a lot of money on Data
General’s bottom line, but past experience made Alsing doubt that he would
ever see any of the loot. He even thought sometimes that if he went on
helping to pound out 16-bit Eclipses and never worked on another big new
machine, he would be a little bored but probably content, Nevertheless,
Alsing stood with West from the start of Eagle, and he never asked for
coaxing.

“West’s not a technical genius. He’s perfect for making it all work. He’s
gotta move forward. He doesn’t put off the tough problem, the way I do. He’s
fearless, he’s a great politician, he’s arbitrary, sometimes he’s ruthless.”
Alsing laced his hands together so that his knuckles made an arch, on which
he rested his chin. Why was West so obsessed about this machine? How
would it all end? Sometimes, Alsing said, he felt he had joined up mainly to
find out. He went on: “I screamed and hollered over NAND gates and
microinstructions with the first Eclipse, but I’m too old to feel that way about
computers now. This would be crashingly dull if I was doing it for someone
else. West is interesting. He’s the main reason why I do what I do.”

Looking around the basement, some of the team’s brand-new engineers
would sometimes wonder what would happen to them when they turned
thirty. Being young, they could make light of the question, and say, as one
did, “When a computer engineer gets old, he gets turned out to pasture or else
made into dog food.” Data General was a young company, and so its
engineers tended to be young. There really was such a thing in the world as a
practicing middle-aged computer engineer. It did appear, however—
management handbooks say so—that many engineers experience a change of
life when they reach the age of thirty or so.

Among engineers generally, the most common form of ambition—the one
made most socially acceptable—has been the desire to become a manager. If
you don’t become one by a certain age, then in the eyes of many of your
peers you become a failure. Among computer engineers, I think, the wish to
manage must be a virtual instinct. The industry’s short product cycles lend to
many projects an atmosphere of crisis, so that computer engineering, which is
arduous enough in itself, often becomes intense. The hours are long.

Emotions get taxed. Moreover, the technology of computers changes
constantly; every year it’s a struggle to keep up with the youngsters fresh out
of school. What another of West’s old hands called “a long-term tiredness”
can easily creep over computer engineers in their thirties.

From the start of Eagle, Alsing disengaged himself from much of the
technical work on the machine. He was running the Microteam, but from a
little distance. Eagle would contain more code than any Data General
machine before it—as much code as Alsing had written in his entire career.
Alsing could not write all of it, even if there were time. He simply could not
generate the excitement he used to feel about gates and bits. Moreover, he
believed that since he could not write all of the code, then he couldn’t write
any of it. These new kids, he saw, approached the job in a way he never had.
They worked steadily, day after day, night after night. That was fortunate, for
the sake of the team. Alsing admired their discipline. He believed that it
exceeded his by far. So he left the writing of the code to half a dozen new
recruits, and most of the supervision of their work to submanagers.

Sometimes Alsing worried about his detachment. “Although I sometimes
say I don’t care too much this time around, if I were to lose this—if I were to
be fired or transferred to another project more mundane—I would be, uh,
very unhappy. Maybe I’m starting to take this place for granted,” he said
once.

For a time, when he was still in college, Alsing had wanted to become a
psychologist. He adopted that sort of role now. Although he did keep track of
his team’s technical progress, he acted most visibly as the social director of
the Microteam, and often of the entire Eclipse Group. Fairly early in the
project, Chuck Holland had complained, “Alsing’s hard to be a manager for,
because he goes around you a lot and tells your people to do something else.”
But Holland also conceded: “The good thing about him is that you can go and
talk to him. He’s more of a regular guy than most managers.”

Alsing created the Microteam. He chose its members and he gave them
their first training, with some help from Rosemarie Seale. Nowadays it takes
a computer to build a new computer, especially when it comes to writing
microcode for one. Alsing figured that before the Microkids did anything
else, they must learn how to manipulate Trixie. He didn’t want simply to give
them a stack of manuals and say, “Figure it out.” So he made up a game. As
the Microkids arrived, in ones and twos, during the summer of 1978, he told

each of them to figure how to write a certain kind of program in Trixie’s
assembly language. This program must fetch and print out the contents of a
certain file, stored inside the computer. “So they learned the way around the
system and they were very pleased,” said Alsing. “But when they came to the
file finally, they found that access to it was denied them.”

The file in question lay open only to people endowed with what were
called “superuser privileges.” Alsing had expected the recruits to learn how to
find this file and, in the process, to master the system. He was equally
interested in seeing what they would do when they found they couldn’t get
the file.

One after the other, they came to him and said, “I almost have it.”
“Okay,” said Alsing, “but you don’t have it.”
In the end, most Microkids went to Rosemarie. Alsing had conferred with

her beforehand. She was to help the Microkids find the file, if they asked.
They learned something, Alsing felt. “If a person knows how to get the right
secretary, he can get everything. It was a resourceful solution—one of the
solutions I hoped they’d find.”

This first game led to others. Not long after the recruits arrived, the “Tube
Wars” began. As a rule, it was the kids against Alsing. In one commonly used
gambit, a Microkid would sit down at a terminal and order Trixie to open up
Alsing’s files. The Microkid would then move the files to a new location.
Returning from coffee or lunch, Alsing would find his files gone. He’d hear
tittering from the cubicles nearby. And he would know he’d been “tube-
warred.”

“What did you do to me?” he’d cry.
“Find out, stupid,” a voice would answer.
The Microkids weren’t the only ones playing games with the computers in

the basement. A young woman worked for Rosemarie. She was unmarried
and, by general consensus, good-looking. Every day for a couple of weeks
during the Eagle project, she was “assaulted” at her desk. She would be doing
her electronic paperwork when suddenly everything would go haywire, all
her labor would be spoiled, and on the screen of her cathode-ray tube would
appear cold, lascivious suggestions. “Whoever was doing it,” said West, had
“the mentality of an assassin.”

West put Alsing on the case. Alsing had some members of the team lay
traps inside the computer system—traps designed to leave a trail back to the

masher’s terminal. But the masher spotted all of these; one time he made his
escape by bringing to an abrupt halt the entire system on which most of the
engineering departments relied. He had to be stopped, and eventually Alsing
found a strong suspect, a young man outside the group. Alsing had a casual
chat with him about all the marvelous tricks that could be played with the in-
house computing system; afterward, the obscene messages ceased.
Wholesomeness, in this regard, returned to the basement. Indeed, said one
young engineer, the place seemed antiseptic.

The masher’s game had been especially nasty and unfair, Alsing pointed
out, because the victim could not fight back. But Tube Wars pitted worthy
adversaries against each other. The jousting did no harm, and, on the
contrary, released tension. One day Alsing came back from lunch and went to
work at his terminal. Everything looked right, all his files seemed to be in
place—until he tried to do something with them. Then, to his surprise, he
found that all of them were vacant. “It was like opening a filing cabinet and
finding all the folders empty. They were dummy files. It took me an hour to
find the real ones. So now I can never be sure, when I log on the system, that
what I see is real.”

Alsing struck back. He created an encrypted file and tantalized the team,
“There’s erotic writing in there and if you can find it, you can read it.” They
tried, and ultimately all gave up, including Bob Beauchamp. Alsing taunted
Beauchamp, though. So Beauchamp tried again. This time he wrote a
program that broke Alsing’s encryption system. “He beat me,” Alsing said.
“But I think he was too much of a gentleman to read what was inside.”

Alsing double-encrypted the secrets in his files after that, and for many
months he assumed they were safe. Beauchamp abandoned his first approach,
feeling that it was a little crude. Now he made a slight revision in Trixie’s
operating system. In essence, he instructed the machine that whenever Alsing
encrypted a message, the operating system should send to Beauchamp’s files
an unencrypted copy. This was the ultimate victory in Tube Wars, not least of
all because Alsing never learned what Beauchamp had done to him until
Beauchamp himself spilled the beans.

Tube Wars died out slowly. At their height, whenever I visited Alsing, I’d
take a look at the screen of his cathode-ray tube and almost always see
something peculiar written on it, some message or picture sent to him by a
young engineer at play. I’d come into Alsing’s cubicle and there on the

screen would be a picture of a fist with the middle finger extended; or there’d
be a little story on his screen:

SEX LIFE OF AN ELECTRICIAN (PART 3) FULLY EXCITED
MILLIE AMP MUMBLED OHM! OHM! OHM!…

Alsing arranged several sorts of social gatherings, among them a weekly
meeting of the Microteam held around a table in a barren little conference
room that contained one tiny window. I went to a couple of these
convocations. Alsing would call the assembly to order, read a few
announcements, and then submit to teasing.

“I read about someone who did a study of his company and discovered
that he was the least important employee. So he quit,” Alsing said.

“So long, Carl!” cried one of the Microkids.
There was a lot of talk about Alsing’s idea that they should hand out

Honorable Member of the Microcode Group Awards.
“I think we oughta give one to West,” said one of the team. “So that when

we get pissed off at him, we can take it back.”
“No,” said another, “because now he’ll be a member of the Microteam.

He can solve his own problems.”
They did do some business, using the beautiful and, to me, inscrutable

language of the microelectronic era: hexaddresses, default redix, floating-
point mantissas, swapbites, sys log, sim dot, scratch pad.

“The scratch pad doesn’t come alive on CPD until one-sixteen,” said one.
“That means all the stack tests go away!” cried another.
“That’s right.”
There was laughter all around the table.
When it died away, a Microkid said, “Look, we can speed up Eagle’s

stack stuff by putting in a scratch pad.”
“Can we,” asked another, “also plant a little bomb in the thing?”
Alsing sat with his hands folded, smiling subtly. He looked like a big

contented cat. No one actually called an end to the meeting. It simply petered
out in laughter.

And yet there was bad feeling among some of them, much of it directed
toward Alsing; and even then, petty intrigue was in progress. Some of the

team would eventually describe the weekly micromeetings as “Alsing’s
weekly No-Op”—No-Op being the name of an assembly-language
instruction that accomplishes nothing. For a long time, however, almost all of
the recruits enjoyed these meetings, the Tube Wars and other entertainments
that Alsing arranged. He made a point of sharing lunchtime with some of
them several days a week. And they appreciated Alsing’s friendliness; they
could always talk to him.

Alsing believed that the team’s managers, in handling the new recruits,
really were practicing what was called “the mushroom theory of
management.” It was an old expression, used in many other corners of
corporate America. The Eclipse Group’s managers defined it as follows: “Put
’em in the dark, feed ’em shit, and watch ’em grow.” It was a joke with
substance, Alsing felt; and he believed that their mushroom management
needed an occasional antidote. Alsing in effect had signed up to provide the
kids with some relief from their toil. West warned him several times, “If you
get too close to the people who work for you, Alsing, you’re gonna get
burned.” But West didn’t interfere, and he soon stopped issuing warnings.

One evening, while alone with West in West’s office, Alsing said: “Tom,
the kids think you’re an ogre. You don’t even say hello to them.”

West smiled and replied, “You’re doing fine, Alsing.”

6

FLYING UPSIDE DOWN

WEST OFTEN SAID that they were playing a game, called getting a machine out
the door of Data General with their names on it. What were the rules?

“There’s a thing you learn at Data General, if you work here for any
period of time,” said West’s lieutenant of hardware, Ed Rasala. “That nothing
ever happens unless you push it.” To at least some people upstairs, this
condition took the name “competition for resources.” As a strategy of
management, it has a long lineage. “Throw down a challenge,” writes Dale
Carnegie in that venerable bible of stratagems dressed up as homilies, How to
Win Friends and Influence People.

In a sense, the competition between Eagle and North Carolina was
institutionalized; each project lay in the domain of a different vice president.
But that may have been accidental. West’s boss, who was the vice president
of engineering, Carl Carman, remarked that he had worked at IBM and that
compared to competition among divisions there, rivalry among engineering
teams at Data General resembled “Sunday school.” Moreover, Carman said,
in a company with a “mature product line” like Data General’s, situations
naturally occur in which not enough large new computers are needed for
every team of computer builders to put one of its own out the door. “And
yeah,” Carman continued, “the competition is fostered.” He said that de
Castro liked to see a little competition stirred up among teams. Let them
compete with their ideas for new products, and bad ideas, as well as the
negative points of good ones, are likely to get identified inside the company
and not out in the marketplace. That was the general strategy, Carman said.
What it now meant downstairs, to the Eclipse Group, was that they not only
had to invent their new computer but also had to struggle for the resources to
build it. Resources meant, among other things, the active cooperation of such
so-called support groups as Software. You had to persuade such groups that

your idea had merit and would get out the door, or else you wouldn’t get
much help—and then your machine almost certainly wouldn’t get out the
door.

Here’s how it looked to West: The company could not afford to field two
new big computers; Data General had made a large investment in North
Carolina as a place where major computers would be built; and although the
Eclipse Group’s engineers had good technical reputations, North Carolina’s
had better ones. The game was fixed for North Carolina and all the support
groups knew it.

So West started out by calling Eagle “insurance”—it would be there in
case something went wrong down south. Thus he avoided an open fight and
thus he could argue that the support groups should hedge their bets and put at
least a little effort into this project, too. As for North Carolina’s superior
reputation, West never stopped suggesting to people around Westborough
that their talents had been slighted. His message was: “Let’s show ’em what
we can do.”

“West takes lemons and makes lemonade,” observed Alsing.
From the first rule—that you must compete for resources—it followed

that if your group was vying with another for the right to get a new machine
out the door, then you had to promise to finish yours sooner, or at least just as
soon as the other team promised. West had said that the Eclipse Group would
do EGO in a year. North Carolina had said, okay, they’d finish their machine
in a year. In turn, West had said that Eagle would come to life in a year. West
said he felt he had to pursue “what’s-the-earliest-date-by-which-you-can’t-
prove-you-won’t-be-finished” scheduling in this case. “We have to do it in a
year to have any chance.” But you felt obliged to set such a schedule anyway,
in order to demonstrate to the ultimate bosses strong determination.

Promising to achieve a nearly impossible schedule was a way of signing
up—the subject of the third rule, as I saw it. Signing up required, of course,
that you fervently desired the right to build your machine and that you do
whatever was necessary for success, including putting in lots of overtime, for
no extra pay.

The fourth rule seemed to say that if the team succeeded, those who had
signed up would get a reward. No one in the group felt certain that stock
options were promised in case of success. “But it sure as hell was suggested!”
said one of the Microkids. All members of the team insisted that with or

without the lure of gold, they would have worked hard. But for a while, at
least, the implied promise did boost spirits, which were generally high
anyway.

I think that those were the rules that they were playing by, and when I
recited them to some of the team’s managers, they seemed to think so, too.
But Alsing said there was probably another rule that stated, “One never
explicitly plays by these rules.” And West remarked that there was no telling
which rules might be real, because only de Castro made the rules that
counted, and de Castro was once quoted as saying, “Well, I guess the only
good strategy is one that no one else understands.”

They lived in a land of mists and mirrors. Mushroom management seemed
to be practiced at all levels in their team. Or perhaps it was a version of Steve
Wallach’s ring protection system made flesh: West feeling uncertain about
the team’s real status upstairs; West’s own managers were never completely
aware of all that their boss was up to; and the brand-new engineers kept
almost completely ignorant of the real stakes, the politics, the intentions that
lay behind what they were doing. But they proceeded headlong. Wallach’s
architectural specification was coming along nicely now. The attempt to turn
those ideas into silicon and wire and microcode had begun. Now they had to
create a complete design and do it in a hurry. Carman made it policy that
members of the team could come and go more or less as they pleased. These
were confident, aggressive young engineers—“racehorses,” West liked to say
—and they were about to be put under extreme pressure. Carman hoped that
by allowing them to stomp out of the basement at any time without fear of
reprisal, he would be providing an adequate “escape valve.”

At last, by the fall of 1978, the preliminaries were complete. The kids had
been hired, the general sign-up had been performed, the promises suggested,
and the escape valve established. Then West turned up the steam.

You’re a Microkid, like Jon Blau. You arrived that summer and now
you’ve learned how to handle Trixie. Your immediate boss, Chuck Holland,
has given you a good overall picture of the microcode to be written, and he’s
broken down the total job into several smaller ones and has offered you your
choice. You’ve decided that you want to write the code for many of the
arithmetic operations in Eagle’s instruction set. You always liked math and

feel that this will help you understand it in new, insightful ways. You’ve
started working on your piece of the puzzle. You can see that it’s a big job,
but you know you can do it. Right now you’re doing a lot of reading, to
prepare yourself. Then one day you’re sitting at your desk studying Booth’s
algorithm, a really nifty procedure for doing multiplication, when Alsing
comes by and tells you, “There’s a meeting.”

You troop into a conference room with most of the other new hirees,
joking, feeling a little nervous, and there waiting for you are the brass: the
vice president of engineering, another lower-level but important executive,
and West, sitting in a corner chewing on a toothpick. The speeches are brief.
Listening intently, you hear all about the history of 32-bit superminis. These
have been around awhile, but sales are really picking up. DEC’s starting to
turn out VAXes like jelly beans, and the word is DEC’ll probably introduce a
new model of VAX in about nine months. No one’s saying it’s your fault, but
Eagle’s late, very late. It really must be designed and brought to life and be
ready to go by April. Really. In just six months. That won’t be easy, but the
brass think you can do it. That’s why you were hired—you’re the cream of a
very fine crop. Everything depends on you now, they say.

You feel good about yourself and what you’re doing when you leave that
meeting. You go right back to your desk, of course, and pick up Booth’s
algorithm. In a little while, though, you feel you need a break. You look
around for another Microkid to share coffee with you. But everyone is
working, assiduously, peering into manuals and cathode-ray tubes. You go
back to your reading. Then suddenly, you feel it, like a little trickle of sweat
down your back. “I’ve gotta hurry,” you say to yourself. “I’ve gotta get this
reading done and write my code. This is just one little detail. There’s a
hundred of these. I better get this little piece of code done today.”

Practically the next time you look up, it’s midnight, but you’ve done what
you set out to do. You leave the basement thinking: “This is life.
Accomplishment. Challenges. I’m in control of a crucial part of this big
machine.” You look back from your car at the blank, brick, monolithic back
of Building 14A/B and say to yourself, “What a great place to work.”
Tomorrow you’ll have to get to work on an instruction called FFAS. That
shouldn’t be too hard. When you wake up the next morning, however, FFAS
is upon you. “Oh my God! FFAS. They need that code next week. I better
hurry.”

“The pressure,” said Blau. “I felt it from inside of me.”
In another cubicle, around this time, Dave Epstein of the Hardy Boys is

dreaming up the circuits of a thing called the Micro-sequencer. Nothing else
will work without this piece of hardware.

Some weeks ago, Ed Rasala asked Epstein, “How long will it take you?”
Epstein replied, “About two months.”
“Two months?” Rasala said. “Oh, come on.”
So Epstein told him, “Okay, six weeks.”
Epstein felt as if he were writing his own death warrant. Six weeks didn’t

look like enough time, so he’s been staying here half the night working on the
thing, and it’s gone faster than he thought it would. This has made him so
happy that just a moment ago he went down the hall and told Rasala, “Hey,
Ed, I think I’m gonna do it in four weeks.”

“Oh, good,” Rasala said.
Now, back in his cubicle, Epstein has just realized, “I just signed up to do

it in four weeks.”
Better hurry, Dave.
“I don’t know if I’m complaining, though,” says Epstein. “I don’t think I

am. I work well under pressure.” Indeed, Epstein will finish on schedule and
his design will turn out to be almost errorless.

But not everyone works well under such conditions. Not everyone thinks
it is worth it. A couple of engineers have already dropped out. A few are less
than happy. One Hardy Boy, Josh Rosen, looks around and can hardly
believe what he sees. For example, Microkids and Hardy Boys are arguing. A
Microkid wants the hardware to perform a certain function. A Hardy Boy
tells him, “No way—I already did my design for microcode to do that.” They
make a deal: “I’ll encode this for you, if you’ll do this other function in
hardware.” “All right.”

What a way to design a computer! “There’s no grand design,” thinks
Rosen. “People are just reaching out in the dark, touching hands.” Rosen is
having some problems with his own piece of the design. He knows he can
solve them, if he’s just given the time. But the managers keep saying,
“There’s no time.” Okay. Sure. It’s a rush job. But this is ridiculous. No one
seems to be in control; nothing’s ever explained. Foul up, however, and the
managers come at you from all sides.

“The whole management structure,” said Rosen. “Anyone in Harvard

Business School would have barfed.”
In relatively serene times, some years before Eagle, West and his wife had

made friends with an electrician who lived in their town. The man’s name
was Bernie. He owned a small airplane, Since West’s farmhouse and barns
lay under one line of approach to the little local airport, Bernie often flew
over. When he did, he would waggle his wings, he might do a quick roll;
sometimes he’d climb halfway out of his window and wave down at the
Wests. “Bernie likes to fly upside down,” West remarked, and he and his
wife shook their heads and laughed.

Alsing often heard West talk about flying upside down. It seemed to mean
taking large risks, and the ways in which West used the phrase left Alsing in
no doubt that flying upside down was supposed to be a desirable activity—
the very stuff of a vigorous life.

Ed Rasala allowed that West made life in their corner of the basement
more dramatic—“definitely more dramatic”—than it usually had to be. But
neither Rasala nor Alsing nor Wallach balked when West said that they had
to fly upside down now. Over this project loomed the memory of EGO. No
one wants to see hard work come to nothing, and EGO was generally
accounted a disaster. But it had lasted just a few months and had involved
only a few engineers. About thirty were working on Eagle now. That the
project might be tossed on the scrap heap somewhere along the way, after
months of thirty souls’ passionate labor, was unthinkable. But it could
certainly happen, they thought. West had felt that he had to promise to do
Eagle in something like a year in order to get the chance to do it. Now he
chose to believe that to get it out the door, they really had to come close to
meeting that absurd schedule. At the same time, they had to do it right—right
in the commercial sense. The whole project was risky, from the start. In
service of the big risk, West undertook on the team’s behalf many smaller
ones.

“We’re always assuming that things’ll break right for us,” observed
Alsing. West was assuming, for instance, that the software resources would
be there when they were needed. They were all assuming that youngsters
fresh from college could build a major new computer, though none of the
recruits had built anything like this before.

Looking for a technical advantage, West gambled that the coming thing in
chips was a type of circuit known as a PAL. The manufacture of integrated

circuits is a fairly risky business; it is said that factories can suddenly become
inoperative for no apparent reason—though a small infusion of dust is a
common suspect. So the conventional wisdom holds that in making a new
computer, you never plan on using any sort of brand-new chip unless at least
two companies are making it. At that moment, only one fairly small company
was making PALs. But if PALs really were the coming thing, it would be a
win to use them. West decided to do so.

West figured that the Eclipse Group had to show quick and constant
progress in order to get the various arms of the company increasingly
interested in helping out. For public relations, and maybe in order to keep the
pressure on his crew, he made extravagant claims. He always pushed them
one step ahead of themselves. Before Wallach finished specifying the
architecture, West had the team designing the boards that would implement
the architecture; before the engineers cleaned up their designs, West was
ordering wire-wrapped, prototype boards; before the wire-wraps could
possibly be made right, he was arranging for the making of printed-circuit
boards; and long before anyone could know whether Eagle would become a
functioning computer, West had the designers stand in front of a TV camera
and describe their parts of the machine. The result of this last act of hubris
was a videotaped extravaganza some twenty hours long. West planned to use
it, when the right time came (if it ever did), as a tool for spreading the news
of Eagle all around Westborough. “Pretty gutsy,” he said, with a grin,
nodding toward the shelfful of video casettes.

One evening West paused to say to me: “I’m flat out by definition. I’m a
mess. It’s terrible.” A pause. “It’s a lot of fun.”

West established the rules for the design of Eagle and he made them stick.
The team should use as little silicon as possible, a mere few thousand dollars’
worth of chips. The CPU should fit on far fewer than VAX’s twenty-seven
boards, and each major element of the CPU should fit on a single board. If
they could fulfill those requirements, Eagle would be cheaper to build than
VAX. On the other hand, it had better run faster than VAX, by certain widely
accepted standards. It should be capable of handling a host of terminals. A
CPU is not a functioning computer system; Eagle also had to be compatible
with existing lines of Data General peripherals as well as with Eclipse
software.

On the Magic Marker board in his office, West wrote the following:

Not Everything Worth Doing Is Worth Doing Well.

Asked for a translation, he smiled and said, “If you can do a quick-and-dirty
job and it works, do it.” Worry, in other words, about how Eagle will look to
a prospective buyer; make it an inexpensive but powerful machine and don’t
worry what it’ll look like to the technology bigots when they peek inside.
West espoused these principles of computer design: “There’s a whole lot of
things you’ve gotta do to make a successful product. The technological
challenge is one thing, but you can win there and still have a disaster. You
gotta give ’em guidelines so that if they follow them, they’re gonna be a
success. ‘Do ABC and D without getting the color of the front bezel mixed
up in it.’ ” Another precept was “No bells and whistles.” And a third: “You
tell a guy to do this and fit it all on one board, and I don’t want to hear from
him until he knows how to do it.”

West reviewed all of the designs. Sometimes he slashed out features that
the designers felt were useful and nice. He seemed consistently to
underestimate the subtlety of what they were trying to do. All that a junior
designer was likely to hear from him was “It’s right,” “It’s wrong,” or “No,
there isn’t time.”

To some the design reviews seemed harsh and arbitrary and often
technically shortsighted. Later on, though, one Hardy Boy would concede
that the managers had probably known something he hadn’t yet learned: that
there’s no such thing as a perfect design. Most experienced computer
engineers I talked to agreed that absorbing this simple lesson constitutes the
first step in learning how to get machines out the door. Often, they said, it is
the most talented engineers who have the hardest time learning when to stop
striving for perfection. West was the voice from the cave, supplying that
information: “Okay. It’s right. Ship it.”

West kept final authority over the circuit designs. But he loosened control
over most of the management of their creation. How did the Hardy Boys
invent the general plan for the hardware? “Essentially,” said Ed Rasala,
“some of the guys and I sat down and decided what elements we needed.”
Over in the Microteam, though never explicitly told to do so, Chuck Holland

took on the job of organizing the microding job. Holland and Ken Holberger
mediated the deals between Hardy Boys and Microkids, but in general the
veterans let them work things out for themselves. The entire Eclipse Group,
especially its managers, seemed to be operating on instinct. Only the simplest
visible arrangements existed among them. They kept no charts and graphs or
organizational tables that meant anything. But those webs of voluntary,
mutual responsibility, the product of many signings-up, held them together.
Of course, to a recruit it might look chaotic. Of course, someone who
believed that a computer ought to be designed with long thought and a great
deal of preliminary testing, and who favored rigid control, might have felt ill
at the spectacle. Criticism of that sort flattered West. “Show me what I’m
doing wrong,” he’d say with a little smile.

In fact, the team designed the computer in something like six months, and
may have set a record for speed. The task was quite complex.

The machine took its first material form in paper—in a fat volume of
pages filled up with line after line of 0’s and 1’s, and in bound books large as
atlases that contained the intricate geometrical depictions of the circuits,
neatly drawn by their draftsman. You could think of this small library of
microcode and schematics as the engineers’ collected but not wholly refined
thoughts on a variety of subjects. The language was esoteric, but many of the
subjects were as familiar as multiplication.

I had imagined that computer engineering resembled the household
electrician’s work, but it seemed the bulk of it lay in making long skeins of
logical connections, and it had little to do, at least at this stage, with
electricity. I wondered, too, why they had to struggle to fit Eagle’s CPU onto
seven boards—seven was the goal—when elsewhere engineers were
routinely packing entire CPUs onto single chips. The general answer was that
a multi-board CPU performs simultaneously many operations that a single-
chip CPU can do only sequentially. By making a CPU on several boards, you
can make it run much faster than a CPU on a chip. A time was probably
coming when components would operate so quickly that the distance that
signals had to travel would intimately affect the speed of most commercial
computers. Then miniaturization and speed would become more nearly
synonymous. But that day had not yet arrived.

Designing Eagle, they went far beyond what could yet be done on a single
chip. Many of the chips that they used came to them ready-made to perform
certain kinds of operations. This took most of the pure physics from their
endeavor. West’s decision to use the new chips called PALs gave the
designers certain advantages. Certainly it helped some of them work swiftly.
When Ken Holberger, for instance, came to a tricky part of a design, one that
promised to take a long time to create, he could often just draw a box on his
diagram and leave that box blank. A single programmable PAL could be
made to perform all the functions that the box had to do. “PAL here,” he
would write on his diagram, in effect. Later, he could come back and
program the PAL. In the meantime, prototypes of the new machine could be
built. But eventually the designers had to program every PAL. They had to
invent the complex internal organization of each of those chips. They had to
know what all the chips were meant to do. And there were thousands of chips
in an Eagle.

Some engineers likened the chips to an unassembled collection of
children’s building blocks. Some referred to the entire realm of chip design
and manufacture as “technology,” as if to say that putting the chips together
to make a computer was something else. A farmer might feel this way:
“technology” is the new hybrid seeds that come to the farm on the railroad,
but growing those seeds is a different activity—it’s just raising food.

Eagle’s designers adopted ideas that were abroad in the industry. From
their files they took some of the material that had been concocted in the days
of EGO and Victor; much of the inspiration for the details came from EGO.
But they invented the largest part of Eagle themselves, in five or six months,
between the late summer of 1978 and the new year.

From one angle, the task was to make an engine that would obey—
without fail and at great speed—each of the roughly four hundred chores
named in Eagle’s instruction set. One night after work, Microkid Jon Blau
described for me the progress of just one of these basic chores, or assembly-
language instructions, through the engine. He left out some steps, simplified
many others, and kept the description fairly abstract. Even so, the short tour
consumed several hours.

Blau was living in an apartment complex near Natick, Massachusetts. His
rooms were neat but sparsely furnished, with an old couch, a beanbag-type
chair, and a bookcase, eclectically stocked—his intellectual diet seemed to

consist of science fiction, well-reviewed novels, philosophy, physics and
math. A ten-speed bike leaned against a wall in the bedroom. His bed was a
mattress on the floor. He apologized for the emptiness of the refrigerator. It
was the apartment of a young man going elsewhere, and it made me feel old.

With Blau, I descended, as it were, into Eagle’s engine room. He pointed
out the main parts of Eagle and spoke of them as if they were sensate things
that asked questions, looked up answers, sent and received messages. It’s a
way of talking about computers that makes some people nervous, but it was
one of the ways he thought about the machine when he was working on it.

In order to execute an instruction in a user program, the engine has to do a
lot of other work first, Blau explained. We should assume that a special
program—a program of programs, let’s call it—is already running. This
program communicates with people using the computer and it does jobs for
them. It schedules and monitors all the user programs that are currently
running. It will also find a program for a user. This program of programs
contains input and output assembly-language instructions, which tell the
Input/Output Control board—the IOC—how to move information back and
forth between the engine and the users’ terminals. (The IOC makes it possible
for the computer to communicate with the outside world; roughly speaking, it
plays the role of a translator who knows many different tongues. It can
arrange for the movement of information at high speed and also for
communication with user devices that work at relatively slow speeds. It’s
complicated.)

Okay, said Blau, someone out there at a terminal, a user, wants to run a
program; call it “program FOOBAR.” Through a terminal, this user tells the
program of programs: “Run program FOOBAR.” The program of programs
tells the IOC to move part of that program from a storage disk outside of the
CPU into the CPU’s “Main Memory,” and to do so at high speed. This
accomplished, the program of programs turns over control to program
FOOBAR. The machine then starts executing the instructions of program
FOOBAR, one after the other.

Before the engine can execute an instruction, it has to find it, of course.
Then it has to fetch it and decode it. Thus we came to the printed-circuit
board known as the Instruction Processor—the IP, it was called, and it was
quite a tricky thing. The IP has a relatively small memory of its own. In a
sense, the IP makes assumptions about what the next instructions in the user

program will be, and it keeps those instructions handy in its storage. Acting
on its assumptions, it finds, fetches, and decodes instructions ahead of time. It
“gets them in the pipeline.” For this reason, the IP is also known as an
accelerator; it does work that any computer must do, but it does it in advance.

Suppose, however, said Blau, that program FOOBAR has been running
for a while and the IP discovers, as it does now and then, that it doesn’t have
the next instruction in its own memory. At this point the IP sends a message
to the Address Translation Unit—the ATU—which among other roles, keeps
a map of the CPU’s Main Memory. In its message, the IP asks the ATU for
the location of the next block of instructions in user program FOOBAR.

Let’s assume, said Blau, that the ATU finds that next block in its map.
This means that the needed instructions are residing in Main Memory. The
ATU knows where and passes the news to the IP. The IP, in turn, sends a
message to another accelerator, known as the System Cache—Sys Cache, for
short—asking for those next instructions.

Maybe the Sys Cache has that next block of instructions. If so, it doesn’t
have to send away for them, but can pass them right on to the IP, and time is
saved. If, however, the Sys Cache doesn’t find those instructions in its own
memory, it retrieves them from Main Memory and passes them on to the IP.

“But,” said Blau, “this next block of instructions may not be in Main
Memory either.” Other people are using the computer, running other
programs. Main Memory is large but not large enough to hold all the parts of
all those programs at the same time. Usually it’s holding only some parts of
each program. So we should assume, said Blau, that the next section of
program FOOBAR is sitting outside the CPU, still in peripheral storage, on a.
disk. In this case, the ATU doesn’t find the address of the next block of
instructions in its map. So the ATU sends a message to the Microsequencer.
(The sequencer holds the microcode, and it was worth noting, Blau said, that
many of the actions so far undertaken have been performed at the direction of
microcode.) The Microsequencer responds to the ATU’s message by sending
out a certain microprogram, which turns over control of the search to system
software. System software, in turn, orders up something called a “page fault
program,” which contains many assembly-language instructions and hence
many microprograms. This page fault program should tell the machine how
to find that next block of instructions in program FOOBAR and how to bring
it into the memory system.

It really should not happen—it would constitute a software design error if
it did, Blau said—but just imagine that the instructions for the page fault
program aren’t in the memory system but are instead out on a disk
somewhere. In order to get the instructions for the page fault program off the
disk, Eagle would have to perform a page fault program, but it couldn’t
perform a page fault program to get the instructions until it already had them.
It would be as if you had locked up a cabinet and left the key inside, Blau
said. “If this happens, the machine will fall down an endless series of
mirrors.”

Such a flaw—flaws are often known as “crocks”—is so notorious as to
have become uncommon, but Eagle’s designers prepared for it just in case.
Via the Console Control board—the CC—Eagle is intimately connected with
a microcomputer, a standard Data General microNova, which acts in part as
Eagle’s therapist. If Eagle goes haywire, the microNova should still function;
thus, it can run diagnostic programs to find out what’s wrong with the larger
machine even if the larger machine is dead. The microNova also constantly
paws through the bigger machine, on the lookout for such special deadly
crocks as a page fault within a page fault. If it detects one, the CC board will
be alerted and it will send back a message to the microNova, which will send
a warning to the system console, the big typewriterlike machine that sits next
to Eagle’s CPU, and the console will print out the following:

INFINITE PAGE FAULT. CPU HALTED.

If you’re the operator of the system and you see this message, you put in a
panicky call to Data General right away.

But suppose none of that happened, said Blau. Suppose the next block of
instructions needed for program FOOBAR is easily found. The Sys Cache
sends that block to the IP. The IP throws away another block of information
to make room for this one, and now the search is over at last. Eagle can begin
to execute the next instruction in program FOOBAR.

The IP examines the encoded instruction and determines that it is a “Skip
On Equal”—one of those instructions that tells the computer to compare two
values and, depending on the result, to follow one of two paths. In assembly
language it’s written as “WSEQ” (which could be the sound a rusty gate

makes).
Specifically, WSEQ instructs the machine to compare two values and if

they are equal, to skip the next assembly-language instruction in program
FOOBAR and go on to the instruction after it. Assume, said Blau, that the
two values—electrically encoded, of course—have found their way into the
Arithmetic and Logic Unit, the ALU (sometimes known as “the number
cruncher,” the heart of any computer).

The IP has determined from the WSEQ instruction several items of
information. The most important of these is the address of the microprogram
that will tell Eagle exactly what to do in order to Skip On Equal.

The Microsequencer is asking for the address of the next microprogram.
The IP now sends this address to the sequencer and the sequencer starts
running the microprogram. The IP has also derived at this time the location of
the two values that are going to be compared. These packets are already in
the ALU. The IP tells the ALU exactly where they are.

“Now we’re moving down to a lower level of abstraction,” Blau said.
“We’re going down to where the microcoder lives.”

There’s a clock inside Eagle. It ticks every 220 billionths of a second.
Between each tick of the clock, Eagle performs one microinstruction.

“Tick,” said Blau.
The sequencer sends out the first microinstruction of the WSEQ

microprogram. The microinstruction is 75 bits—75 units of high and low
voltages. They scatter throughout the circuits. Some go to the ALU and tell it
to subtract one of the two values from the other. Some of these microbits go
to the IP, some to the ATU and IOC, and some go right back to the sequencer
and tell it the address of the next microinstruction in the WSEQ
microprogram.

“Tick.”
The sequencer sends out that second microinstruction. Part of it goes to

the ALU, telling the ALU to examine the result of its subtraction. If the result
of the subtraction is not zero—if, in other words, the two values are not equal
—then the ALU sends a low voltage down a certain wire. The
microinstruction has told the Microsequencer to monitor this wire. Finding a
low voltage there, the sequencer brings the WSEQ microprogram to an end.
It sends a message to the IP, saying, in effect, “Not equal, no skip on equal
this time—get the next assembly-language instruction in the user program.”

But if the result of the ALU’s subtraction is zero—if the two values are
equal—then the ALU sends a high voltage down the special wire that the
Microsequencer is monitoring. The sequencer interprets this and sends out
the third and last microinstruction in the WSEQ microprogram.

“Tick.”
Out goes this last line of microcode, telling all the boards to wait, except

for the IP. The IP is told to skip the next assembly-language instruction in the
user program and to resume operations with the next instruction after that.
This, finally, is how Eagle skips over one crossroad in a program and starts
down another road.

West had said that designing a computer was “a mind game.” I asked Blau
whether following an instruction around through the engine in the way that
we had was the sort of mind game that they played when designing Eagle.
“You bet it is!” he said. But they played hundreds of such mind games; and
figuring out how to equip Eagle merely to WSEQ was itself much more
intricate than Blau could fully explain in a single sitting.

Such games of logic, especially if they are played in a hurry—while flying
upside down—can take a grip on an engineer’s thoughts and hold on. After
playing this way for a while, you look at a tree and, aha, it is clear that a tree
is much like a computer; and a road with side streets is—what else?—a kind
of computer program. Chuck Holland said that this unpleasant sensation, of
being locked inside the machine, usually lingered three days—on the rare
occasion when he got away from the basement for that long.

West would sit at his desk and stare for hours at the team’s drawings of
the hardware, playing his own mind games with the results of the other
engineers’ mind games. Will this work? How much will this cost? Once,
someone brought a crying baby past his door, and afterward it took him an
hour to retrace his steps through the circuit design he had been pondering.
Laughter outside often had the same effect, and once in a while it made his
hands shake with rage—especially if he didn’t like the design he’d been
staring at.

West usually drove out of Westborough fast after work. “I can’t talk about
the machine,” he said one evening, bent forward over the steering wheel.
“I’ve gotta keep life and computers separate, or else I’m gonna go mad.”

7

LA MACHINE

ONE MORNING shortly after the designing, West was sitting in his office with
the door closed, staring at schematics.

Deadlines lay impossibly near at hand. One of the group’s veterans,
observing the scene outside West’s office, remarked: “The tension among the
kids was phenomenal. I could just feel it.” Now, in the cubicle across from
West’s door, a couple of members of the Microteam began to laugh—first
one, then the other, then both of them, more and more raucously.

A moment later, Carl Alsing’s phone rang.
It was West. “If you don’t shut those guys up I’m gonna kill ’em!”
“He was ripshit,” said Alsing. “I had to go out there and tell them not to

laugh. It was awful. I felt so embarrassed. I felt like one of those old
supervisors from the 1800s who used to hire children and make them work
eighteen hours a day.”

West took a day off and went to look at sailboats.

One Sunday morning—the team’s official day of rest—West was at home,
trying to lose himself in the newspapers, when the water pump in his house
broke down. Throwing the papers aside, he went to the basement to fix the
thing. For him, this was a trivial task. He knew just how to do it. He had
scarcely begun, though, when hitting some minor setback, he grabbed the
pump and hurled it across the room. He stood there, staring after it. If he had
done that, what might he do next? In order not to find out, he went upstairs,
told his wife to call the plumber, and went right to bed, at midday.

What was wrong with West? Wasn’t the worst behind them, now that they

had finished the design? He didn’t want to talk about it. He merely shook his
head.

Now, early in the new year, something like the computer existed, in the
form of two partially assembled prototypes. But Eagle wasn’t even the
equivalent of a pocket calculator yet. The team now had to make that
computer work. They called this part of the project “debugging.” West had
told Ed Rasala to draw up a debugging schedule that would bring Eagle to
life by April, the date West had named for the bosses. West had gotten
Manufacturing to send down some senior technicians from the factory in
Portsmouth, New Hampshire, both to bolster the ranks of debuggers and to
get Manufacturing involved. Rasala had put the Hardy Boys on two shifts.
West had prescribed eight hours of work for Saturdays. They had made some
progress, but now it was coming painfully and slowly. In the local idioms,
they were “moving three steps forward, two steps back,” and the debugging
schedule was “slipping a week a week.”

West had assumed that debugging Eagle would resemble the debugging of
Eclipses. He had been deceived. You had to make many parts of Eagle start
working, it now appeared, before you could really begin to fix it—this
because of certain new features, which everyone agreed were “sexy.” West
couldn’t ignore the evidence; he didn’t know how to debug this machine, and
he could not make himself believe that Rasala and his Hardy Boys would
figure it out for themselves.

That fall West had put a new term in his vocabulary. It was trust. “Trust is
risk, and risk avoidance is the name of the game in business,” West said once,
in praise of trust. He would bind his team with mutual trust, he had decided.
When a person signed up to do a job for him, he would in turn trust that
person to accomplish it; he wouldn’t break it down into little pieces and make
the task small, easy and dull.

To Alsing, West still had that knack for making the ordinary seem special,
and the way West said “Trust” made Alsing wonder whether either of them
had ever heard the word before. But West prided himself on his skills at
debugging and, by repute, he excelled at it. He wanted to go into the lab and
will the machine into life, Alsing thought. But if West barged in there now,
he would be admitting that he didn’t trust his team after all. So West was
staying away from the lab and instead was banning laughter outside his door
and throwing water pumps around. Most every day now West called Alsing

into his office, closed the door, and asked, “What’s really going on in the lab,
Alsing?”

Wasn’t all this excessive? If you set a preposterous schedule, don’t you
figure that it can slip a little? True, said Alsing, but not to the point. “If you
say you’re gonna do it in a year and you don’t take it seriously, then it’ll take
three years. The game of crazy scheduling is in the category of games that
you play on yourself, in order to get yourself to move.”

It was a game in which new hands were always being dealt, a little like
poker perhaps. West and his staff had created the deadline of April and, in the
act, had agreed at least to pretend to take it seriously. Many months later,
Carl Carman would say that no one upstairs believed they would finish Eagle
that soon. Some evenings downstairs, West seemed to say the same thing.
“We’re gonna finish this sucker by April, Alsing,” he’d say.

“Yeah, Tom. Sure we are,” Alsing would reply.
They’d smile at each other.
Sometimes, however, when, for instance, Alsing came in and told West

that the Microteam would probably miss some intermediate deadline, West
would say, “Come on, Alsing, this schedule’s real.”

Now, on an evening early in 1979, Carman brought West a piece of
momentous news: North Carolina was going to miss their own deadline by a
huge margin.

What did this mean? That the game of internal competition had essentially
ended and the game of outlandish scheduling had begun in earnest? West had
always maintained that Eagle was crucial to the company. Well, events were
proving him right. But that was no cause for celebration. Meeting that
preposterous deadline of April, when Eagle should be free of all bugs, was no
longer merely desirable or just a matter of pride: it had become a corporate
necessity.

At least that was the message West thought Carman gave him—the
message West decided to receive, anyway. West sat in his office brooding
about it for a long time.

Depending on who you were, you saw West’s narrow office either as the
lair of an ogre or as a haven with a door behind which you could talk
privately. And if it meant the latter, it was, depending on the day of the week
and the time of the day, either a place to talk nervously about impending
disasters or else to use as a kind of lounge. Steve Wallach, Carl Alsing and

Ed Rasala looked forward to their collective weekly meetings with West. He
held them in his office on Fridays at 3:00 P.M. They’d do some business, West
would tell them the latest company gossip, and, like Alsing at his own
meetings with subordinates, West might submit to what Alsing called
“zingers from his troops.” “We could be in a lot of trouble here,” West might
say, referring to some current problem. And Wallach or Rasala or Alsing
would reply, “You mean you could be in a lot of trouble, right, Tom?” It was
Friday, they were going home soon, and relaxing, they could half forget that
they would be coming back to work tomorrow.

In the mornings, if West took Alsing into his office, it was usually to ask
such questions as: “Is this real, Alsing?” “Is this gonna work, Alsing?”
Alsing called these episodes “time out to worry.” In the evenings, however,
West could ask Alsing those same questions with a wry smile, as if to say,
“Weird trip we’re on, eh, Alsing?” and the question of whether this project
was “real” would usually lead to a little mutual rumination on the meaning of
the word itself.

Alsing sometimes encouraged members of the Microteam to visit West’s
office after six; they would enjoy it, he promised. None seems to have taken
the advice, but Alsing was right. At that transitional evening hour, before
hurrying away toward his farmhouse, West would leave his door ajar, like an
invitation, and leaning back, his hands fallen still, he would entertain most
any visitor.

But on the evening after West heard the news about North Carolina,
nightfall brought no relief. The game of what’s-the-earliest-date-by-which-
you-can’t-prove-you-won’t-be-finished scheduling had been switched on
West. Or he had switched it on himself; there was no essential difference.
The debugging wasn’t going well, and West had a wild air, as if his office
were a cage.

He started out talking with his hands in his lap, keeping them busy by
twiddling his thumbs. His hands kept getting away, though. He pushed back
his hair. He drove his index fingers up under the bridge of his glasses. He
made fists and his fingers exploded outward. “I was selling insurance before.
Now it’s the big crap-shoot, all on one number. Now I gotta get way out on
the edge, full of anxiety about the company falling into a revenue hole if it’s
not there by April—ten thousand jobs on the line, and I gotta pretend
everything’s fine—and there’s a lot of pressure in that. I can’t afford to

appear too scared around here. I don’t talk about it. In the first place, no one
outside of here is interested, and I can’t talk to people around here and say,
‘Here’s how I’m manipulating you.’

“Carman says the company’s in a lot of trouble if it’s not there by April.
Suppose I quit? I could just say, ‘Fuck it,’ and go…. I’m not gonna do the
next machine. I’m gonna give somebody else a chance to fail. I’m gonna get
totally out of computers.”

West stopped once in this long, unusually bitter monologue to say: “No,
we wouldn’t have a disaster. We’d back and fill.” He seemed to be saying
that he had to make himself believe that dire consequences would ensue if his
team missed its deadline. In a moment, his reason seemed clear. “It just gets
so scary I can’t even talk about it. I may have to take Rasala into the lab and
work on that thing myself twelve hours a day. When you’re doing that, you
carry it with you everywhere you go. At some level purely me faces me. I
better be up here, just crackerjack every morning, fixing that thing. Every
morning I gotta wake up and think, ‘Oh, Christ, can I do it?’ ” West took hold
of the arms of his desk chair, as if he were about to get out of it and head for
the lab right then. “Rocking back here in my chair and talking about doing it
is one thing, but it makes me worry. It gives me a nauseous feeling, because
I’m not doing it.”

West didn’t go into the lab that night or on the working days. One Sunday
morning in January, however, when the team was supposed to be resting, a
Hardy Boy happened to come by the lab and found West there, sitting in front
of one of the prototypes. Then, one Sunday, West wasn’t there, and after that,
they rarely saw him in the lab, and for a long time he did not even hint that he
might again put his own hands inside the machines.

Whether West accomplished anything or not on his Sunday trysts with
Eagle, no one ever knew. But some time after he called an end to them, he
said: “We’re way beyond what any one person can do. It’s too complex.”

A senior member of the Microteam had wanted to create special
microdiagnostic programs for Eagle, and West had turned him down,
thinking that the regular, higher-level diagnostics would suffice, as they had
for debugging Eclipses. Now he relented. Later, the microdiagnostics would
become very important. Opinions varied on how much they assisted then, but

it seems that they did help the Hardy Boys surmount the first awful barrier:
how to fix the machine enough so that they could really fix it.

For a while West continued to take Alsing aside and ask him if they really
were making progress in the lab. Gradually, even those queries ceased.
Alsing, who often had the feeling he was watching a movie, believed that a
scene ended there. His leading man had finally mastered restraint, and in the
running commentary Alsing was keeping through me, he recorded: “This
week Tom finally gripped the arms of his chair and decided to trust Rasala.”

When West described the other engineers on his staff—Wallach and
Alsing—he boasted about their technical attainments. Of Ed Rasala, he said:
“His biggest strength is, the guy does not give up. He’s in there when most
other people go belly up.” Rasala was West’s trustiest lieutenant.

From the top of his head, the dome of it bald, to his feet, usually shod in
construction boots, Rasala looked big. He wore a thin mustache and beard.
He delivered firm handshakes and hearty hellos. “How ya do-in?” he’d say.
“He talks very fast,” observed Alsing. “It’s almost a speech impediment.
Sometimes I feel like giving him a shot of Valium and then telling him,
‘Okay, Ed, say it again.’ ” It was odd, but sometimes, even when just saying
hello, Rasala’s voice carried a sarcastic sound, as if he was mocking himself
for what he was saying.

On an evening at the end of January, down in the basement, Rasala
walked up to one of the doors labeled RESTRICTED AREA, unlocked it, and led
the way in, down a corridor, around a bend, through another door and into a
room with yellowish cinderblock walls on one side and on the other a
movable partition. The chamber wasn’t much bigger than most suburban
living rooms, and it was more cluttered than many. It had a floor of linoleum
tile and no ceiling, but instead a tangle of metal braces, heating pipes and,
hanging down into the room, many thick black electrical cables. On a gray
metal table lay a number of large bound books and looseleaf binders with
such labels as EAGLE MICRO SEQ II and ATU PALS. In a gray metal bookcase
next to one wall stood published volumes with titles such as Bipolar TTL
Data Book. Rasala stood near the center of this chamber of exotic initials,
arms folded on his chest, and, nodding across the room, said, “Here are two
state-of-the-art computers, sitting there.”

And there they were at last, the object of anxiety: a pair of Eagles,
standing a few yards apart from each other along the cinder-block wall. They
were just two blue metal frames, their tops about level with Rasala’s
shoulders. Machines in this state are said to have their skins off. Inside each
frame, exposed to view—and somehow that didn’t seem right—was a shelf
full of what are called wire-wrapped boards—thin plates, each with one side
covered by a profusion of tiny wires. Small cables, flat like tapeworms, ran
among the boards, and farther inside, below the shelf, hung many bundles of
multicolored wire. Oh my, there were a lot of wires. At the base of the
frames, in metal housings, were the fans that keep the machines from
overheating. The fans’ steady roar filled the room.

The two prototypes looked identical, except for their names. Taped across
the top of each frame was a piece of paper. One read COKE, the other
GOLLUM. When the machines were first put together, the team had planned to
call them Coke and Pepsi, but Ken Holberger insisted that one be named
Gollum, after the sinister, spidery creature in Tolkien’s Lord of the Rings;
and for some time that winter and spring, Gollum was in fact the more
interesting machine, the one on which they met the most intricate problems.

“They’re not too impressive at this point in time,” said Rasala. He meant
the machines’ looks, not their abilities, though he would have been right in
either case. Equipment much fancier-looking than the prototypes themselves
surrounded Coke and Gollum. On top of each sat a microNova, Eagle’s
therapist, with its blue plastic skins on. A system console—a chair, typewriter
and printer—attended each prototype, and a magnetic tape drive stood next to
Coke. On TV and in the movies, a tape drive often appears in order to signify
the presence of a working computer. That must be because the reels of tape
spin jerkily and thus show that something is happening, but in fact, mag tapes
represent some of the least important and slowest parts of a computing
system. The real action takes place inside the boards. To get a look at it, you
need special tools, and they had them there, of course—boxy little machines
called logic analyzers.

The analyzers sat on low wheeled carts, like pieces of surgical gear. They
were covered with switches, and each had a small oscilloscope screen; at this
moment, on one screen, a strange shape etched in white lines stood frozen
and on another danced shifting geometrical patterns. In essence, Rasala
explained, these machines were cameras. They took pictures of what

happened inside the computer. The analyzers could not look into the chips,
but you could hook their probes to the pins of a chip or to wires connecting
boards and take several different kinds of snapshots, as it were, of the signals
coming and going. The analyzers also contained little memories. When the
clock inside Coke or Gollum ticked, every 220 nanoseconds—every 220
billionths of a second, that is—the analyzer would take a picture. It could
take and save 256 snapshots during a given foray and play them back on
demand.

“It’s funny,” Rasala said, “I feel very comfortable talking in nanoseconds.
I sit at one of these analyzers and nanoseconds are wide. I mean, you can see
them go by. ‘Jesus,’ I say, ‘that signal takes twelve nanoseconds to get from
there to there.’ Those are real big things to me when I’m building a computer.
Yet when I think about it, how much longer it takes to snap your fingers, I’ve
lost track of what a nanosecond really means.” He looked at me. “Time in a
computer is an interesting concept.”

Then he excused himself. Time in all varieties weighed upon him, and out
here it was time to go to work.

We had come in at the changing of the shifts. The second shift, which
often became a graveyard shift, was just coming on duty, a. little early, as
usual—everyone came early and stayed late these days. Ken Holberger, who
is short and handsome, was sitting in front of Gollum. Rasala joined him;
Rasala looked like a giant beside him. Holberger was Rasala’s second in
command, and you could see from the easy grin Rasala turned on him that
they were friends.

“It doesn’t loop on fetch, Ed,” said Holberger, in greeting.
Shirt sleeves, jeans and corduroys; mustaches, beards and neat, shoulder-

length hair; jogging shoes and hiking boots were in fashion inside the lab. I
stood near the center of the room. I heard Rasala cry out: “Whoa. What did
you put in for an address?… I’ll give it all F’s for the hell of it… Whoops,
that didn’t help your float much.” Questions would be asked and never
answered out loud. An engineer sitting alone at Coke said: “The program
blew away on me. I don’t know what happened to it.” But he seemed to be
talking to himself.

Gradually, the scene shifted. Some of the Hardy Boys put on coats and
departed. A few others came in. Then Rasala sat down at the central table and
took up a sheaf of papers. These were engineering change orders—ECOs.

They contained descriptions of recent “fixes” that the team had made in the
boards of the prototypes. The ECOs mattered because the engineers were
working on different problems in each of the machines. After they fixed a
problem in one, they wrote up an ECO so that they’d know how to make the
same repair in the other. In his list of seventeen rules for the lab, Rasala had
written this commandment: “All boards should be updated each morning so
that we can insure that each board is in the same state.” Apparently, the crew
hated this job. Rasala said they were always putting it off. “For the sake of
forging ahead with new problems,” he said, “I’m thinking of enforcing the
rule.”

Rasala rocked back in his chair. “Let’s figure out what we gotta do.” The
others turned toward him. He leafed through the thick sheaf of ECOs, saying:
“ATU, ATU, ALU, ALU. And then of course we have the anonymous
problem.” He made a sour face.

The other engineers had come near—warily, it seemed. Holberger said,
“Well, commander, what do we do?”

Rasala looked at them from over the tops of his wire-rimmed glasses, and
with a faint, Westian smile, he held aloft the sheaf of ECOs.

Josh Rosen, a black-haired young man said: “Oh, no. Not me. I did that
last night.”

As Rosen turned away, Rasala stared at him—a lingering gaze, his
eyebrows slightly lowered. Then he lifted them and looked at Holberger, who
said, “Okay, I’ll do the ATU.”

Rosen was over at Coke. The others—Rasala and Holberger and a
technician—sat down before a long bench on the opposite wall. Each laid a
wire-wrapped board down in front of himself.

On one face of a board lay neat rows of the little boxes that housed the
chips. The other side, though, was pandemonium. Snarls of thin wires were
attached to the hundreds of pins that came out of the chips and extended
through holes to these undersides of a board. The wire-wrapped boards
rendered a vision of the Jekyll-and-Hyde phenomenon. Each engineer laid his
down with the face of Hyde up, and each focused a high-intensity lamp on it.
Holberger would pick up the board he was working on and peer into the
spaghettilike maze as if he were nearsighted. Rasala left his board on the
table and bent low over it. They all followed the same careful routine: locate
the pins from which a wire is supposed to be detached; make sure these are

the right pins by testing with an ohmmeter; unwrap the wire gently with a
small, hollow-tipped tool; throw that wire far away; locate the pins to which a
new wire should be attached; wind the new wire on; test again with the
ohmmeter; and go on to the next ECO.

About ten minutes went by in silence. Then Holberger said, while peering
at his board: “I’ve got a two-A here. Is that meaningful?”

“Yeah,” said Rasala, but he didn’t even look up.
Half an hour went by. Rasala pushed back his chair, lifted his glasses, and

rubbed his eyes. “The thrill of debugging the machine,” he said to me. “We
do this ourselves, rather than have a wire person do it. You’re so prone to
make mistakes with this. We may be a little more cautious. Then again”—he
pulled himself back to the bench—“we may not be.”

The fans in the two Eagles droned on behind the bent backs of the
engineers-turned-technicians. In a while, Rasala turned to me again, holding
up before my eyes a pair of tweezers. I looked closely. The tweezers held a
tiny strand of wire. “One of the problems,” he said. It was awfully easy, he
explained, to drop a sliver of wire this size in among the thick nest of wires
on the back of a board. And if that little fragment should get lodged in the
wrong place, it could cause the machine to commit failures of the sort known
as “flakeys.” Debuggers could spend hours, even days, finding the cause of
such a problem.

I said, “It’s like surgery.”
“Well, not quite,” said Rasala. “Most problems we create are repairable.”
I laughed.
But he wasn’t finished. “Most surgery isn’t,” he added, and went back to

his labor.
When it came to working on the machine, Rasala had no truck with

incomplete thoughts.

“I come from a conservative background, from the beer-drinking
generation—I’m into sports, my wife’s into being a housewife—so I don’t
have dreams of grandeur fundamentally about going out and building the next
evolution of the computer.”

The first few times I talked to him, Rasala described himself in long rapid
sentences like that one, and he spoke them with an edge in his voice that

seemed to say, “You probably think I can be sized up like this.”
“I’m a poor Polish boy, I come from the slums of New York, I have a

high-school equivalency diploma and would rather play softball,” he said. In
fact, as he later told me, his father came from Poland, and Rasala grew up in
an apartment in Brooklyn. But it wasn’t the slums, and what he really
remembered was a home where you never went hungry and you knew from
an early age that you were going to college. Both of his parents worked. His
father, a waiter for Child’s Restaurants who read a great deal on the side,
taught himself from a book to fix TVs and made a part-time business of it.
“Both my parents are very smart,” said Rasala. His older brother was “a math
whiz” and wound up valedictorian of his class at Columbia University.
“Pretty good,” said Rasala, “considering my mom has a high-school
equivalency diploma and my dad never went past fifth grade.”

Although not a bad student, Rasala had the misfortune of following his
brother through school, and from the elementary grades on, his teachers never
stopped reminiscing about his brother. “From grade school on, it was always
my rap—I never lived up to my potential,” he said. He didn’t sound bitter; he
seemed to believe it was a matter of fact.

Rasala went to Rensselaer Polytechnic Institute and studied electrical
engineering, including logic design. But this was during the early sixties, and
he never laid hands on a computer until he went to work at Raytheon, right
after college. Rasala never had the feeling, which others in the Eclipse Group
remembered, of having his true calling suddenly revealed to him the moment
he touched a computer. And it took him seven years, he said, to recognize
“the opportunities and pleasures of working.

“To me, it was more important to play softball, take karate lessons, and
play hearts at lunch.” At Raytheon he carved out for himself an
undistinguished, comfortable niche, doing routine assignments. When he
finally did get an assignment that he could not fulfill by looking up answers
in books, he worked hard and succeeded, somewhat to his own surprise. That
project whet his appetite. But he knew he had established a reputation for
being “an average guy,” and he did not think other interesting assignments
would come his way at Raytheon. To shuck that reputation, he decided he
had to start over at another company.

In a trade paper, he saw an advertisement for Data General—not one of
the early, brazen ads, just an ordinary listing: “Engineers Wanted.” On a

whim, he drove out to the company’s headquarters and said, in essence,
“Here I am.” Engineers and executives, including Carl Carman, interviewed
him on the spot, and Rasala was impressed. “At Raytheon, I never even saw
someone at Carman’s level.” Data General offered him a job that very day
and he accepted their terms without so much as an argument. “I wasn’t very
good at bargaining, I guess.” And he went to work, not on the job he thought
he had been hired to do, but on a piece of the hardware for the first Eclipse. “I
was had,” he recalled, and he smiled.

When Rasala arrived, all that remained to be done on his part of that
Eclipse hardware were finishing touches. West, who was just another
engineer then, noticed Rasala, however. He liked the dogged, straightforward
way in which Rasala went about finishing up. As Rasala himself observed
much later on: “With Tom, it’s the last two percent that counts. What I now
call ‘the ability to ship product’—to get it out the door.” Rasala looked at me
squarely. “And I may not be the smartest designer in the world, a CPU giant,
but I’m dumb enough to stick with it to the end.”

West called himself “a mechanic”—one who could take the ideas of
engineers technically brighter than he and make those ideas work; he thought
he had spotted that quality in Rasala, too, and he had promoted it. West
groomed Rasala as a leader of hardware teams. Eventually, he put Rasala in
charge of the hardware for the biggest of the 16-bit Eclipses, the M/600. As
often happened, the pace of that project became frenetic. It took a year of
increasingly intense labor from Rasala, and when it ended he felt tired. He
was looking around for something easy to do when West asked him to
manage the development of Eagle’s hardware. Rasala declined.

In his office, the door closed, West schemed. “How am I gonna get Rasala
to sign up?” he asked Alsing.

Unlike Wallach, Rasala wasn’t a student of advanced architectures. Rasala
wasn’t worried about Eagle’s supposed inelegance; he was just tired.
Offering him a chance for vengeance wouldn’t work, because Rasala had
been pounding out the M/600 during the EGO wars and he didn’t have
anything to feel vengeful about. Rasala was a hard one, West said. Bringing
him to the signed-up condition was mainly a matter of persistence. West
presented Eagle to him as a test of strength. Could they get this machine out
the door on time? Again and again, he told Rasala that the company needed
this machine desperately. Rasala never actually said, “I’ll do it.” One day, it

seemed to him, he was just doing it.
For months afterward, he would come home at night and his wife would

ask him, “How was your day?”
“It was terrible,” Rasala would tell her. But as he went on describing the

day’s events, his wife noticed, he became increasingly excited.
“Maybe it’s masochism,” Rasala said. “But I guess the reason I do it

fundamentally is that there’s a certain satisfaction in building a machine like
this, which is important to the company, which is on its way to becoming a
billion-dollar company. There aren’t that many opportunities in this world to
be where the action is, making an impact.” It struck him as paradoxical, all
this energy and passion, both his own and that of the engineers around him,
being expended for a decidedly commercial purpose. But that purpose wasn’t
his own. He had enjoyed his years at Raytheon; life had been pleasant there
and he had been an easygoing fellow. Now, in the Eclipse Group, for several
years in a row he had been working overtime without extra pay in an
atmosphere that was decidedly not easygoing. Why had he made the switch
to Data General and now signed up to work on Eagle?

Rasala said, “I was looking for”—he ticked the items off on his fingers
—“opportunity, responsibility, visibility.”

What did those words mean to him, though?
Rasala shrugged his shoulders. “I wanted to see what I was worth,” he

explained.
More than anyone else in the Eclipse Group, Rasala borrowed expressions

from West: fundamentally; basically; the win; some notion of; quick-and-
dirty; the ubiquitous canard; the long, drawn-out and, as in, “So and so says
such and such, ahhhhhnd, it’s a canard.” But Rasala tended to qualify and
expand, as if he feared ambiguities, whereas West was inclined, in his daily
commerce, to the short, forceful sentence. West’s words and phrases just
didn’t sound the same on Rasala’s tongue.

The team was having problems with one of the support groups. They
believed that this group was slowing Eagle’s debugging; this group wasn’t
trying hard enough—which was to say, they were working just normal hours
on Eagle’s behalf. They believe Eagle will fail, Alsing thought; he could see
it in their eyes, he said. West stood in a corridor discussing the problem with
Rasala. “I’m gonna detonate those guys,” said West, in a flat, calm voice, as
if he were planning a business trip. Then he promised to “waste ’em.” He

added, “We’ll string them up by their toes.”
Months later, looking back, Rasala decided that when West took on

people in other groups and “beat them up,” as this sort of activity was called,
he did so in a purposeful way, one that was usually “not so much mean as
intimidating.” In one fairly typical case, a support group missed a promised
deadline. At a meeting, West questioned the group’s leader. The leader said
that he hadn’t received a certain piece of equipment yet. West would not let
the matter rest there. He wanted to know why it hadn’t been shipped and
what was being done about it. West was “always pushing,” Rasala noticed.
But the act, Rasala would come to believe, was never as dramatic as the
language West used to describe either what he was going to do or what he
had actually done. For a long time, however, Rasala took West’s descriptions
as a fairly literal model of how to contend, and when Rasala confronted a
troublesome support group, he beat his fist on the table and shouted and made
open threats. I saw him after one such encounter, returning to his cubicle. He
was red. “I don’t want to beat people up,” he said, throwing his hands down.
“I don’t want to be a bad guy. I just want to get something done.” He took
some deep breaths, then proceeded to explain that it really wasn’t the support
group’s fault. Eagle wasn’t their machine, they couldn’t be expected to work
as diligently on it as the Eclipse Group.

Bob Beauchamp remembered, by way of drawing the contrast between
West and Rasala, receiving a set of orders from West. “Do this,” West said to
him, and in West’s tone of voice, Beauchamp heard, “No ifs, ands or buts, no
arguments, no commenting, no nothin’—just figure out how to do it and get it
done.”

“Did it work?”
“Yeah, it worked,” Beauchamp said. “When Tom said do something,

people did jump.” He went on, “Rasala was practicin’ that, I think. He could
bark too.”

Beauchamp grinned. He and Rasala were good friends now. Before they
were, early in the project, Beauchamp was standing around with one of the
Hardy Boys one evening, talking casually, when Rasala came out of his
cubicle and, looking them up and down, said, “Don’t you guys have work to
do?”

“What the hell?” Beauchamp thought to himself. “It’s after working
hours.” So he said to Rasala, “No.”

To Beauchamp’s surprise, Rasala didn’t say any more. He just walked
back to his cubicle.

“Then I knew,” Beauchamp said.
Rasala participated in West’s campaign to create the illusion of a machine

before one existed, and on the whole Rasala endorsed the strategy. But he
worried. Clearly, he could not make West’s approach his own. “We’re
getting the rest of the company geared up now, and we could fall flat on our
face. This whole thing scares me, because we’re pushing.” At West’s
insistence he had made up a debugging plan that would bring Eagle in by
April. Then he made up one that would bring the machine home by May. In
mid-March, when Rasala knew that they wouldn’t come close to that second
mark either, he went to a meeting with West and heard his boss insist to a
number of people in others groups that they would have all the bugs out by
May. “Now May one is the target and we’re not gonna do it,” said Rasala
when he came back. “It’s sort of a poker game. Everyone’s bluffing, but
everybody seems to know the rules of the game, and I don’t know those rules
yet.” He continued, “I strongly believe in supporting my boss, because I
know he’ll support me. So I try to be consistent with what Tom is saying,
one, and two, I try to be as honest as possible.”

One day Rasala bought a self-help manual that promised on its cover to
hold the secret to understanding one’s boss.

Just a few minutes after I first met him, Rasala told me, “I’m not a bright
guy.” I wrote that down in my notebook, and for the rest of the evening, he
kept saying: “But I’m a dumb guy. I must be, you wrote it down.” Rasala was
far from dumb, though. He was just somewhat puzzled and, at the same time,
bent on self-improvement.

When Rasala said something earnestly—if they failed, it would be his
fault, no one else’s, he told me, for instance—you never felt that he meant
something else. Somehow he found the time, after working what usually
amounted to a ten- or a twelve-hour day, to drive into Boston one night a
week and take a course in a new programming language. He was going to fill
in the gaps in his technical education, and he would not skip a class, not for a
snowstorm or even a ball game.

Most engineers, I think, consider themselves to be professionals, like
doctors or lawyers, and though some of it clearly serves only the interests of
corporations, engineers do have a professional code. Among its tenets is the

general idea that the engineer’s right environment is a highly structured one,
in which only right and wrong answers exist. It’s a binary world; the
computer might be its paradigm. And many engineers seem to aspire to be
binary people within it. No wonder. The prospect is alluring. It doesn’t matter
if you’re ugly or graceless or even half crazy; if you produce right results in
this world, your colleagues must accept you. It’s an exciting environment to
contemplate; you can change the way people think if you can provide the
right reason, and you can predict the way in which others may change you.
Since there are only right or wrong answers to questions, technical disputes
among engineers must always have resolutions. It follows that no enmity
should proceed from a dispute among engineers.

Clearly, West believed in these precepts—designs were right or wrong;
engineers were winners or losers and those judgments had nothing to do with
whether he liked them personally or not. But there were many reasons to
doubt the reality of this binary world. What had the EGO wars proven but
that talented engineers can dispute narrow technical issues and never come to
agreement? Amazed at the alacrity with which West sometimes consigned
engineers around him to the status of winners and losers, and convinced that
West was usually right, Alsing nevertheless always wondered to what extent
West made his own judgments come true. Rasala had always believed that a
technical argument between two engineers couldn’t lead to hard feelings. But
he had recently lost his oldest professional friend because of what he had
imagined to be a technical disagreement.

An engineer was supposed to be eager to advance in his company’s
hierarchy, and Rasala was, but he had other dreams. Some years before, he
had taken a trip to Jackson Hole, Wyoming, and ever since, he had wanted to
go back there and do something simple: he thought he’d like to open a
grocery store in Jackson Hole someday. To Rasala, many of the young Hardy
Boys seemed hip and cultivated in ways that were foreign to all his previous
experience of engineers. But he did not for that (or any other) reason
disapprove of them. And he didn’t seem to envy them or want to change his
ways and be just like them. He talked about them with plain curiosity, as if he
were a traveler in their country.

One evening, over beers, Rasala complained about some insipid movie
recently shown on TV. He compared this stinker to The Prime of Miss Jean
Brodie, an example of a film he’d liked. Actually, he had admired the

protagonist most of all. “I don’t know why,” he said. “She’s romantic,
foolish, unrealistic—everything an engineer’s not supposed to be. But I like
her.” He gave a short nod, as if to say, “This decision is final.” Then he said it
again. “I like her.”

Rasala wasn’t West and he wasn’t dumb either. He seemed to be in
transit.

When the hardware team started to design Eagle, Rasala opened a sort of
diary. It reads like the journal of a frontiersman’s travails, except that instead
of wolves, hostile Indians and busted wagon wheels, the reader encounters
the indecisiveness of logic designers, an affliction that causes a designer to
“spin” from one possible approach to another; the regular breakdown of the
computer they were using to work on their computer; and the tendency for all
bright young engineers to redesign and redesign in search of perfect
unattainable solutions. In the diary, one delay follows another. Schedules
always slip. The last entry, recorded several months before they stopped
designing, reads, “Overall, things look lousy.”

This was the biggest job Rasala ever had, and he was just finding his way
around in it when he wrote that journal. I got the impression that a few
engineers doubted his suitability, on the grounds that others were more
brilliant than he. Rasala himself said: “I’m an implementer. I’m not gonna go
out and invent anything. But making it work is fun. It’s something I think I
do reasonably well. I don’t have Wallach’s knowledge, I’m not on top of the
architecture per se, but I’m a good designer, I think, and I’m a better
debugger.”

The sheer physical complexity of the machines demanded that the
debuggers plod, and plodding did not always come easily to the quick, bright
Hardy Boys. Were signals just barely making it to their destinations between
ticks of the computer’s clock? If so, they had better go back and work on
problems they thought they had solved. Was there a lot of noise inside the
machines? Noise, as Rasala explained it, is what makes your TV go haywire
when you turn on your blender—stray voltages that are propagated through
the machine; and too much noise fouls performance. Noise is not the most
interesting of problems, but coping with it requires experience and
imagination and a certain doggedness. On one occasion, the Hardy Boys
found that while one board was failing, another one, identically wired,
worked right. The problem, they discovered, lay in a single chip. They

wanted to throw that chip away, put in another, and go on. But Rasala would
not allow it. The suspect chip might not be defective; it might just be working
a little more slowly than most of its kind. In that case, they would have a real
problem to fix. It might never show up again in the lab, but when the time
came to mass-produce this machine, it would almost certainly come back to
haunt them. Some slow chips were inevitable, and they had to provide for
them.

In the main, Rasala’s technical role was to play the brake. When the
Hardy Boys complained loud and long about updating boards every day, he
bent the rule, but insisted that they perform this crucial, unpleasant task every
Saturday. When he put them on two shifts, he made a point of working the
better part of both. He was a good West Pointer; he led by example.

Rasala took a week off from the debugging that summer and spent the
time building a porch on his house. I came by one day to give him a hand and
got a dose of his style of management.

He lived in a fairly new house, of quasi-Colonial design, located in one of
the many residential neighborhoods that had sprung up in the area more or
less in rhythm with the growth of the numbers on the bottom line of Data
General’s annual reports. The numbers had grown faster than trees do. His
house lay so close to headquarters that he could have ridden a bike to work,
although, given the traffic nearby, it would have been a dangerous commute.

While working with Rasala, I made a careless reading of a carpenter’s
level and we consequently made the frame of the porch just a shade
cockeyed. Rasala stood back and stared at the frame for a while. Then he
said, “Ship it.”

He teased me about the mistake, in a friendly way. He also prodded.
When I arrived, he said he expected to finish the entire job that day. Around
three in the afternoon, I said I was tired. “Tired?” said Rasala, reaching for a
tenor’s high note. “Tired? You’re not tired. How can you be tired? You mean
to say you’re tired already?”

Somehow, I felt I had to keep working. An hour and a half later we still
weren’t finished, and then I really felt tired and said so. Rasala let go on the
instant, brought out some beer, and declared the day a success.

For most of their time together, most of the Hardy Boys got along well
with Rasala. He teased them and he prodded them, and they did the same,
both to him and to each other. One evening just before going home,

Holberger made a minor, careless mistake. Discovering it, Rasala told the rest
of the crew, “I hope you’re gonna leave Holberger a nasty note. He’d leave
you one.” Rasala liked a contentious atmosphere, a vigorous, virile give-and-
take among himself and his crew. “Smart, opinionated and nonsensitive,
that’s a Hardy Boy,” he declared.

Above all, Rasala wanted around him engineers who took an interest in
the entire computer, not just in the parts that they had designed. He said that
was what was needed to get Eagle out the door on time. He wanted the Hardy
Boys to bind into a real team, and he spoke with evident frustration of
engineers who were reluctant to work on boards that someone else had
designed, who felt comfortable only when working on their own. Josh Rosen,
he believed, was one, only one of those who felt this way. “Rosen designed
the ALU and he wants to work on the ALU and nothing else,” Rasala
complained. “But I have a good confidence level on that board. It’s not the
first priority now. I need him elsewhere.” Much later, Rasala would say, “I
realize now that Josh wasn’t as comfortable with the ALU as I was.” Back
then, however, his feelings were different.

It seemed that he had given up trying to win Rosen over. When he spoke
to Rosen, Rasala’s voice had an edge to it, like the one it sometimes had
when he was describing himself. He teased Rosen from time to time. “Your
ALU is not fast enough to keep up with this blazing machine, Josh,” he told
him one night in the lab. Rasala often spoke that way to Hardy Boys. The
difference was that the others usually answered him back in kind. Rosen, on
this occasion, just turned away.

The days of the debugging wore on. In March West said, referring strictly
to the debugging, “Most of the fear is gone now.” He was speaking only for
himself, however. The team had passed through the first sharp fear. But they
had designed the machine much too fast for prudence. It had features that
none of the group had dealt with before. At this stage none of them dared
claim to understand in detail how all the parts worked and fit together.
Sufficient cause for worry about the debugging remained.

Alsing thought that even under the best circumstances, several kinds of
fears inevitably attend a debugging. One was the fear of “the big mistake,”
the one that would be discovered late in the game and would require a major

redesign—and with it, perhaps, a fatal delay. There was “the flakey fear”:
that they had designed Eagle and were debugging it in such a way that it
would never be reliable or easy to build in large numbers. Rasala had that one
fairly well in hand. But there was also “the bogeyman fear.” “Just something
dark and nameless,” said Alsing, “that the machine just won’t ever work.”
West said: “It’s the infinite page fault you didn’t anticipate. The bogeyman is
the space your mind can’t comprehend.”

Once in a while, Alsing said, he suffered a form of this last anxiety.
“Maybe these guys writing the microcode are really bullshit artists, so full of
shit they don’t even know they’re full of shit. Maybe this whole thing is
bankrupt.” Such thoughts came to him rarely, usually at night. They vanished
when the sun rose. Probably they stemmed from the fact that Alsing wasn’t
writing this code himself or reviewing it closely. Rasala once remarked,
“Yeah, the further you get from doing it yourself, the more demons you see.”

Gradually, Rasala came to own (having acquired the title to it from West)
main anxiety over the machine. Anxiety became just something he lived with,
like a bad back. For a while, I engaged in a ritualized conversation with him.

“How’s the machine, Ed?”
“Ahhhh, la machine,” he would say. “Let’s see. How is it?” He would pull

his chair up to the chart of whatever debugging schedule was currently
hanging on his cubicle wall, and usually wound up explaining why they had
fallen behind this schedule, too.

One day he answered the question differently. “The machine. It’s what
everyone calls it. That’s the whole thing—to build ‘the machine.’ ” When
Rasala heard that phrase, he thought of a movie called Duel, which he had
seen on television a couple of years before. In it, the hero is chased by a
trailer truck, for no apparent reason. Throughout the movie, as Rasala
remembered it, neither the hero nor the viewer ever gets to see the truck’s
driver, if there is one, but only the front end of the semi looming like a huge
evil face in the hero’s rearview mirror, always threatening to drive the hero
off the road, always returning just when it seems that the hero has escaped
from the thing at last. “My favorite movie!” Rasala said.

His five-year-old son, the older of his two children, soon found out his
father’s weak spot, and now when he got angry at Rasala, the child would
say, “I hope your machine breaks, Daddy.”

At night, when the last Hardy Boys got ready to go home, they would

leave Coke and Gollum running one of the many diagnostic programs, a long
list of tests that the machine had to pass before it could be called truly
functional. Usually they’d leave the prototypes running a test that they had
already mastered. At home, in the middle of the night, Rasala would
sometimes come awake with a start. He would not be conscious of having
dreamed. He would awaken and find himself wondering if one of the
machines had stopped working for some new, unknown reason. Or he would
wake up thinking about the latest failure, the one whose cause they’d been
looking for a whole week and still hadn’t found. The bogeyman—la machine
—was there in his bedroom.

8

THE WONDERFUL MICROMACHINES

TO ALMOST EVERYTHING they touched, the Microteam attached their prefix.
The office that four of them shared, sitting virtually knee to knee, had a sign
on the door that said THE MICROPIT; the room in which they held their weekly
meeting was the micro-conference room. They gave out microawards and
Carl Alsing had his microporch. One of them owned a van, which became the
microbus. That winter several of them would go out riding in it on Friday
afternoons, when West held his own weekly meetings with his managers.
Then, in the first warm days of spring, they created the outdoor microlounge,
to which they now repaired on those Friday afternoons.

Near one corner of the back of Building 14A/B, down a steep, man-made,
earthern embankment, lay a narrow slice of woods. It must have been a
pasture once. An old stone wall ran through it. Several flat rocks had been
removed and propped against the wall in such a way as to fashion the crude
seats and backs of micro-chairs. The sky promised rain, and the leaves not yet
being out, the lounge lay in full view of the camera mounted on the corner of
the roof high above, but the several Microkids who gathered there didn’t
seem to notice the weather or the camera. Their mood was altered. Reclining,
they talked about computers and other social issues.

“Our nightmare is that you keep getting faults.”
“We have to do this project on the fly.”
“Yeah, we’re all flying.”
“No, if you page-fault you have to look for it, but if you can’t find it you

have to page-fault to find it and you can’t page-fault until you find it. That
can happen with a stack fault, too. It’s a basic kind of crock.”

“Sure. There’s always a way to kill a computer.”
“We should build a trap that’ll let us in, for fun, at the end.”
“That’s a nice concept, leaving a trapdoor for later, but a real purist would

want to get into a machine built by someone else.”
“Well, there aren’t too many machines in this place that we can’t control.”
“What does it mean to understand a computer?” I inquired. “Knowing

where all the electrons go?”
“Maybe the electrons aren’t in the computer at all. They just turn on the

lights.”
“Electrons are mathematical abstractions. So who can talk about

electrons? We speak about electrons loosely.”
Everybody laughed and laughed, until, it seemed, everyone forgot what

they were laughing about. One Microkid started talking about a model of
computer that was ten years old. He said, “They’re really ancient.” Uttered
there, beside the crumbling stone wall, the statement sounded odd.

“I’ve been here since seven,” said one of the team, apropos of nothing.
“I’ve been here since January,” said another.
A couple were discussing solar energy, the military-industrial complex

and education. Engineering school was awfully specialized; meanwhile, the
liberal arts were in decline. “Liberal arts, they’re not economically viable,”
said one.

“Does that mean you should restructure education or restructure society?”
said the other.

“You should restructure society. That’s for sure.”
It was a pleasant afternoon. Looking up toward the TV camera, I noticed a

large bird’s nest in a nearby tree. Trying to catch their mood, I said: “Look at
that bird’s nest. Who do you suppose lives there?”

Right away, in a tone of voice expressing something like appreciation, one
of the Microkids looked up at the nest, nodded judiciously, and declaimed,
“Carl Alsing.”

Part of the Microteam displayed a tendency to keep odd hours and play
zany games. You’d expect that. Compared to that of the Hardy Boys, who
were now bound by necessary schedules to the actual machine, the
Microteam’s job had an air of the ephemeral. In the main, they could write
their code when they pleased, as long as they did it on time, which is to say,
very quickly. The code, the go-between for language and machinery, is in
itself odd stuff—a witches’ brew, many novices feel the first time they see it

work. “It takes people with devious minds,” Microkid Dave Keating
contended. “Almost all of us fall into that category. We’re not quite system
bombers, but we’re shaded that way somewhat.”

“I hire Wests. Alsing hires Alsings,” said West. But both West and Alsing
had chosen recruits with fine academic records, unlike their own. And in
other respects Alsing had shown eclectic taste. He hired a woman—and
women were scarce in hardware design—as well as a former rock-and-roll
musician. He picked some shy ones and some much given to practical jokes.
At least three of his choices would turn out to be, when given the chance, fine
engineers both of hardware and of microcode. And when he had hired Chuck
Holland a couple of years earlier—this and the fact that he trained Holland
was one of Alsing’s crucial contributions to the project, as it turned out—he
did so largely because of a piece of sculpture. “I’m working on this thing,”
Holland had said, when in his interview, Alsing had asked him what he did
for fun.

“Tell me about it,” Alsing had said. So Holland had, and by the time he
had finished, Alsing had felt sure that Holland could write microcode. “It was
my clue that he could make something intricate work.”

From a distance Holland’s sculpture looked like a rectangular cage, and
closer up, a gallery of spiders’ webs. It stood roughly five feet high. Thin
steel rods attached to each other at odd angles made up the four outer walls of
the cage. The top made a sort of funnel, somewhat like a coin box on a bus—
four sloping planes that narrowed down around a little hole. Rather shyly,
Holland dropped a handful of silvery steel balls into this funnel, and the
sculpture went to work.

Within it, in puzzling shapes, lay a complex of tracks made of two thin
steel rods. A ball dropped through the hole at the top. An entire section of the
cage seemed to move. Inside the webbed structure a section of the
labyrinthine track swung down; the ball dropped onto it; the seesawing piece
of track rose back to its starting place, blocking the next ball for a moment.
Then it swung down again. The second ball dropped. In a moment, the thing
was full of steel balls and all of it was softly clanging, like a city awakening
at dawn. It made you blink to watch it work. The balls, descending, seemed
to cross each other’s paths. Now one seemed to be in the lead, now another.
They made sudden sharp turns, zipped from one side of the cage to the other,
disappeared from view behind a maze of fretwork, traveling ever so slowly,

and reappeared as silver blurs.
“Do it again.”
In fact, there was really just one track and the balls went down it one by

one. The track was also discontinuous. A ball rolled down one stretch of it,
balancing between two rods, and the rods of the track widened just enough, at
just the right spot, so that the ball would drop through from one section of
track down onto another section. “There are a lot of fine tolerances here. The
track got a little rusty once and then it wouldn’t work,” said Holland.

“At first I just wanted to make it work. It was an engineering feat for me.
Then I decided I wanted to hide the track, but then I decided the track’s kind
of neat so I let some of it show. I wanted it to have some meaning. I have my
own ideas of form. Planes and so on.” He ran his hand across one section of
the outer walls, as if stroking an animal’s fur. “These wires cut this plane, and
I just think that’s really neat.” It had taken Holland months to build this thing,
taking it apart, putting it back together, taking it apart again.

His father was an engineer; Chuck Holland had wielded screwdrivers and
pliers for as long as he could remember. He had met his first computer in
high school—and it was an old IBM, of course. Good-looking, trim, neat in
his appearance, he had a wild-looking smile, which he did not often feel like
showing during the season of Eagle. He did not approve of the way the group
was assaulting diagnostics, and he pleaded, without success, for a more
diplomatic approach. He seemed quiet, pleasant, shy—all in all somewhat
like Alsing, easily overlooked—and he felt that he had been, thus far in his
career.

Holland organized the microcode for Eagle. Each microinstruction of a
microprogram is a string of 75 units of high and low voltages, represented by
0’s and 1’s when written down. Holland divided this standard 75-bit string
into standard chunks of several bits each, each chunk being called a field.
Each field contains some number of unique combinations of 0’s and 1’s and
affects discrete parts of the hardware. Each unique combination is what
Alsing called a microverb. Holland and Ken Holberger invented definitions
for every possible microverb. The result was a sort of dictionary. Adding
versatility to its contents was the fact that certain microverbs could, for
instance, say one thing to the ALU and something altogether different to the
Microsequencer.

The possibilities for creating microcode full of internal contradictions

were virtually unlimited. Holland had to guard against that. He drew up rules
—of grammar, as it were—to make sure that the code and hardware would fit
together and to prevent each microprogram from interfering in some subtle
way with any other. He saw to it that every microcoder consulted the others
when making a change in a microverb. The microverbs and rules for their
application he put into a book, called UINST. U stands for “micro” and INST
for “instruction set.” The Microteam called it their bible. The Hardy Boys
called it “a Sears, Roebuck catalogue” and “the Microteam’s wishbook.”

UINST became a battlefield. Its contents changed every week. Holland
and his troops would make their changes and the Hardy Boys would look at
UINST and say, “There’s no way we can do this function and this function in
hardware.” The two sides would argue and work out those problems. Then
the Microteam would discover something else that was hard to do in
microcode, and deciding that it should be done in hardware, they would insert
in the next issue of UINST this wish for a change. The Hardy Boys were on
guard. They’d scan UINST carefully, looking for new Microteam mischief,
and finding this new item, declare, “No way we can do that in hardware.”
And it was back to bargaining again.

Control seemed to be nowhere and everywhere at once. It was an almost
tangible commodity, passed from hand to hand down the hierarchy of the
group, and everyone got some. West gave Alsing responsibility for getting
the microcode done on time. Retaining ultimate authority, Alsing let Holland
assume almost complete technical command; and after establishing general
rules and while keeping an eye on them, Holland gave each Microkid virtual
reign over a portion of the code.

There were hundreds of basic instructions to be encoded in thousands of
microinstructions. All of the Microteam worked on recoding the old 16-bit
Eclipse instructions. There were the microdiagnostics, or “the Wringers,” as
they called them. They worked at all hours, and sometimes when the Hardy
Boys needed a new section of code in order to move on with the debugging,
they worked around the clock. Every member of the Microteam knew weeks
of intense pressure, which would gradually subside, and then rise again.

Jon Blau said: “You have narrowed your field of vision to a small little
world, trying to make it a vision of your own mind, and that’s the kick—
getting control of something. Maybe that for me describes the kick—that I
can be totally in control of XSH-zero. That’s the name of a signal, which is

the electrical embodiment of an idea. It was wrong. This morning I found an
easy way to fix it.” It did not always seem healthy to Blau. “When you’re
concentrating on that little world, you leave everything else out.” But he had
to admit, he was enjoying himself. “That’s the big kick,” he said. “That the
guys with the purse strings are trusting a bunch of kids to come up with the
answer to VAX. That’s what bowls me over, that they haven’t just put us in a
corner somewhere, doing nothing.”

The whole process looked strange, confusing, improbable, even to some
in the Eclipse Group. But although the group as a whole was missing
deadlines, the process seemed to be working. They were developing the
hardware and microcode more or less in concert, and the Microteam was
holding up its end. Although most of them were only beginners, when they
delivered their code to the lab, they usually did so on time; and they made
mistakes, of course, but far fewer than Alsing had expected.

One main reason why they did not fall into an enthusiastic chaos was
Holland himself. He helped Alsing choose the team. He organized their work.
He reviewed all of it carefully. He helped mediate the battles over UINST.
He wrote some large chunks of code himself. No one had more skill than
Holland at the art of intricate construction, and no one worked harder than he.
Nobody had ordered him to do all this. Alsing had made the opportunity
available, and Holland had signed up. On the whole, he was happy in this
work. “I never had more people around me who felt like they were friends,”
he said. He, too, felt excitement in the air. But he had some experience. He
knew that credit did not always fall to those who deserved it. Would Alsing
and others take credit for things that he, Chuck Holland, had done? The fear
made him gloomy sometimes. He seemed to be girding himself for
disappointment.

Holland did not make all arrangements. Another source of the
Microteam’s strength was a tool they called the simulator. They relied upon
this thing. They loved it. They did not like to think where they would have
been without it. And it was Alsing who arranged for the simulator, in an odd
sort of way.

In theory, a computer can mimic the behavior of anything. It can do so
accurately only if the thing being imitated is thoroughly defined. So

computers achieve only partial success, at best, when instructed to simulate
the behavior of a city or to foresee the future of a national economy.
Computers do well, however, when imitating other machines, including other
computers—unbuilt ones that exist only on the paper of an architectural
specification. You make the old computer imitate the new by writing a
program. This program—the simulator—makes the existing computer
respond to instructions just as the contemplated, unbuilt computer should.
Essentially, your program translates instructions designed for the unbuilt
computer into instructions that the existing one obeys. You can create a
simulator that will make an old computer ape the behavior of the fanciest new
computer you can imagine. People build new computers in hardware and not
in such a program because simulators are slow—the Microteam’s for
instance, ran more slowly than Eagle was supposed to run by a factor of
about 100,000. A simulator makes a slow computer but a fast tool.

Alsing wanted one. He had often wished he had a simulator, for testing
and correcting microcode. On every other project, he had been forced to
debug the microcode by running it on the prototype hardware of the new
machine. But the hardware of the new machine was itself being debugged
and indeed could not be fully debugged without the microcode. This made for
awkward situations and mysteries in the lab. If the machine failed, it was hard
to know what to blame first—the hardware, the microcode or the diagnostic
program. For several years now, before every project, Alsing had held
essentially the same conversation with West.

“I want to build a simulator, Tom.”
“It’ll take too long, Alsing. The machine’ll be debugged before you get

your simulator debugged.”
This time, Alsing insisted. They could not build Eagle in anything like a

year if they had to debug all the microcode on prototypes. If they went that
way, moreover, they’d need to have at least one and probably two extra
prototypes right from the start, and that would mean a doubling of the boring,
grueling work of updating boards. Alsing wanted a program that would
behave like a perfected Eagle, so that they could debug their microcode
separately from the hardware.

West said: “Go ahead. But I betchya it’ll all be over by the time you get it
done.”

Simulators were at least ten years old. No great mysteries surrounded

them. After some calculation, however, Alsing realized that a program to
simulate Eagle would be huge. It might take a seasoned programmer a year
and a half to write such a thing, he figured. But Alsing kept these calculations
to himself.

Although his intentions were in the main unquestionably gentle, Alsing
seemed to have a constitutional aversion to the direct approach. I was visiting
him one evening that spring. We were sitting in his living room, when the
oldest of his three sons, a handsome, soft-spoken and polite teenager, came to
him complaining that all of the TV sets were broken again.

“What did you want to watch?” Alsing asked him.
“ ‘Charlie’s Angels,’ Dad.”
“Gee, that’s too bad about the TVs,” said Alsing.
When his son had left the room, Alsing grimaced. “I’m terrible,” he said.
He had grown worried that his boys were watching too much of the wrong

sort of television—“evening violence and Saturday-morning cartoons,” he
said. So one night he had gone around the house and had disabled all of the
sets. On the theory that his sons would learn more from trying to repair a TV
than from watching one, Alsing encouraged them to try to fix the things. He
spent many pleasant Sunday mornings working on the sabotaged sets with his
sons. His boys were learning more and more about TVs, but they hadn’t yet
gotten any of them to work. On occasion, however, when Alsing approved of
a show that they wanted to watch, at least one set would, as if by magic,
suddenly start working.

Who would Alsing get to write the simulator? Who could do it quickly
enough for the thing to be useful? On the Microteam there was a veteran
programmer, a jovial fellow named Dave Peck. Peck had a raucous laugh; it
was his laugh preeminently that drove West to distraction. Data General
employee number 257, Peck had performed his full share of round-the-clock
programming. He had come over from Software to the Eclipse Group,
because Alsing had promised him the chance to manage others for a change.
Peck was a fast programmer. “The fastest I ever saw, the fastest in the East,”
said Ken Holberger.

Peck said he’d been told he was fast so often that he guessed he must be.
“But programming’s just obvious to me.” The problem was that these days, it
took him a long time to talk himself into writing a big program—longer, as a
rule, than it took him to write the program. Peck could turn out a simulator

quickly, if anybody could. (He would ultimately perform some crucial
smaller programming projects for the group, about thirty-four in all.) Like
Alsing, he had been thinking on his own about a simulator for debugging
microcode—just figuring out how he’d go about writing a simulator, in case
he should get up the desire to do it. So far, however, the desire had not come.

The group also had another programmer. Among the first of the
Microkids to arrive at Westborough was a twenty-two-year-old phenomenon,
a fellow with degrees in computer science and electrical engineering and a
nearly perfect academic record in those areas. His name was Neal Firth. He
liked to program computers. He said: “I may be a little vain. I took a course
in college in machine code. It was supposed to be a flunk-out course. To me,
it was extremely simple. It’s always just seemed extremely logical to me,
programming.”

Alsing considered the situation. He had two confident programmers—one
relatively inexperienced, the other reluctant. Somehow, out of the two of
them, he should be able to get a simulator. He put Peck in charge of the
effort, but only nominally.

Shortly after Firth arrived, Alsing sat down with him and discussed ideas
for a simulator. “There are a number of things you have to do to write one,”
said Alsing, drawing a grossly oversimplified picture of the task.

“Yeah, I could do that,” Firth replied.
They talked about simulators with growing enthusiasm, until Alsing felt

they had “a nice little fire going.” Then casually, Alsing popped the question:
“How long do you think it would take to write this simulator?”

“Six weeks or two months?” said Firth.
“Oh, good,” said Alsing.
When he was ten years old, Alsing remembered, he was given a book

called All You Need to Know about Radio and TV. When he had read it from
cover to cover, he really believed that he did know everything about radios
and TVs. He didn’t, of course, but thinking that he did had given him the
confidence to take apart radios and TVs and in the process to learn what
made them work. He had that experience in mind when he talked to Firth.
“When Neal said he could do it in a couple of months, he was probably
thinking back to how long term-projects in college took.” Firth, Alsing
reasoned, had not been performing make-work projects as many neophyte
engineers do their first years out of school. He didn’t know what he could not

do. “I think that after our little talk, Neal had a picture in his mind that he
knew all about simulators now. It was no problem. He could do it over the
weekend.”

Around this time, Alsing also sat down with Peck. Firth was Peck’s
responsibility, Alsing said. Peck should somehow lead Firth to complete a
simulator in just a few months. So Peck explained to Firth his own ideas
about simulators. He laid out the basic scheme for Firth, in greater detail than
Alsing had.

Observing the two from a little distance, Alsing got the strong impression
that while Peck and Firth liked each other, neither was about to concede that
the other was a better, faster programmer. A little friendly competition might
work nicely here. Alsing went to Peck and said: “We really need some sort of
simulator in six weeks. So, Dave, why don’t you do a quick-and-dirty one,
while Neal works on his bigger one?” Peck agreed. The contest began.

Every so often over the next month or so, Firth would visit Alsing and tell
him that his simulator was coming right along and was going to do many
things that Peck’s quick-and-dirty one would not.

“Oh, good,” said Alsing.
Peck got his simulator written and running in about six weeks, right on

time. One member of the Microteam used it, but only for a while. Two and a
half months after Peck finished, Firth’s simulator became functional. Two
months after that, Firth had refined it. He gave the Microteam a full-blown
version of Eagle in a program—a wonderful machine, of paper, as it were.

If Firth had not built his paper Eagle, the lab might have looked like a
crowded car on a commuter train: Hardy Boys and Microkids bumping into
each other, all tempers on edge. Everyone arguing about whose turn it is to
update boards. West threatening to throw them all out of the lab and do it
himself. The debugging proceeding ever so slowly. Microkids writing up
sections of code, then waiting in line for a chance to test them on a prototype,
and after getting a crack at the prototype and finding their code doesn’t work,
having to set up trace after trace with logic analyzers, trying to see what’s
going wrong. They will be lucky if they finish this computer in three years.

As it was in fact, the Microteam could test their code right at their desks,
via their own terminals. Firth’s simulator was a program stored inside their
computer, the Eclipse M/600—Trixie. They merely had to feed into Trixie
the microcode they wanted to test, order up the simulator, and command it to

run their code. They could order the simulator to stop working at any point in
a microprogram. The simulator could not tell the microcoders all by itself
what was wrong with their code, but it arranged for the storage of all the
necessary information about what had taken place while the code was
running, and would play all of it back upon demand. Thus, without having to
invent ingenious approaches with logic analyzers, the team could examine
each little step in their microprograms. They could find out what was going
wrong in an instant, in many cases. In the Microteam’s small corner of the
world, Firth’s was an heroic act.

When they first moved to Westborough, in the summer of 1978, Firth and
his wife, Lynn, lived in an apartment not far from Building 14A/B. His
working day began in the shower, and would continue as he walked to
Westborough on those summer mornings. A lone figure walking along the
side of the access road—a young man, stocky and graceful, with long black
hair cut straight as a hedgerow in a line just above the shoulders, wearing
glasses with large black frames and often a blue Windbreaker, and black
shoes. At that hour, there would be a torrent of cars—grim faces behind the
windshields—hurrying toward the plant. But Firth hardly noticed the traffic.
He was building his simulator. It was not a trivial task.

Firth had to write a program for every microverb. Then he had to shuffle
and reshuffle these programs. In the material Eagle, all the microverbs in a
single microinstruction would be executed in parallel, at more or less the
same time, between two ticks of the computer’s clock. But the simulator was
a program, in which events occur one step at a time; it could execute the
various microverbs of a given microinstruction only serially, one after the
other. And the order in which the microverbs of a given microinstruction
were executed was often crucial; one verb could in effect cancel another.

UINST also defined cases in which one microverb would alter the
meaning of another one and cases in which one microverb would tweak two
different pieces of hardware and mean two different things to each of them.
From time to time, while he was building the simulator, features of the
microcode and hardware of the material Eagle would be altered; Firth had to
change his simulator accordingly. Moreover, he had to make his abstract
machine useful to the Microkids. How would the people who were going to

use the simulator extract information and give instructions? This is one of the
most important and most often neglected issues that faces any programmer.
Firth began his work pondering the question, and it showed. He made his
paper machine completely “interactive.”

“I guess nobody considered it a possible project in the time frame,” Firth
said, “but I didn’t know that. To me, it seemed, well, challenging. It could be
done. I was able to do it because I had no idea of what was going on. Usually
it was: ‘We gotta have this feature in the simulator by tomorrow or poor old
Jon Blau won’t be able to do a thing.’ That’s usually how it was.”

For two summers during college, Firth had worked as a manual laborer for
a company that produced computerized junk mail. He’d often found himself
in the back room with nothing to do, and he would scout around for software
documents that had been written for the company’s computers. One day he
found a stack of programs that a company engineer had created. Leafing
through them, he found a glaring error, one that would make it impossible for
the computers to address properly junk mail bound for California. Firth had
just begun to study programming, but the error was “just obvious” to him.
Remembering this incident years later, Firth said that the engineer had
probably been “programming by rote. He wanted to make his program look
like programs he’d seen before, and that clearly wasn’t gonna work.” Firth
always tried to avoid such an approach. “I like to work around ‘why,’ ” he
told me. “I prefer not to know the established limits and what other people
think, when I start a project.”

Firth said he thought his interest in electronics began when he was five
years old. He was at a neighbor’s house, playing with an electrical toy. The
neighbor’s son, somewhat older than he was, came in and warned him that he
would get electrocuted if he did certain things with that toy. But Firth had
already done all those things.

“I find myself very much of a loner,” he said. “When I was younger, I
would sit and make model boats and planes endlessly.” I saw him at one of
the team’s parties, and he was very jolly, talking fast. He often ate lunch with
some of the other new recruits in the basement and had, he felt, some fine
conversations with them. He said he liked technical discussions, but he also
liked to talk about other matters. “Like the ultimate meaning of life,” he said,
with a grin. “I like to do strange things, go off and watch a tree for an hour. I
can do that. I’ve always found that I’m a little off the beaten track. It doesn’t

bother me too much. I had a big interest in abstract music in high school and
no one else liked it. Maybe I’m right, maybe they are, but as far as I’m
concerned they’re entitled to their incorrect opinions.”

Firth didn’t often mingle with the rest of the group, after work. He said
that was because he was married and because he had moved some distance
away from Westborough. I asked him, “Do you miss the society a bit?”

“I think I’ve always missed it, personally,” he said.
Firth, who was born in Canada, went to high school in a suburb of

Chicago, “a neighborhood in which everyone was moving somewhere
upward.” His father was a regional sales manager for a company in the area.
Firth excelled in high school, was placed in all accelerated courses, and had
no trouble with any of them—and “no challenge,” except the ones he found
for himself in music and computers. He, too, met the machines in the form of
“an ancient IBM.” The high school kept its machine in a little room, which
was left open for him during the summers. He would go in and program the
computer all morning, and in the afternoons he’d practice with the band. It
was one of those first-class mid-western high-school marching bands. Firth,
in a big drum-major’s hat, once led the band through a performance at
Soldier Field in Chicago. He also played the contrabass clarinet, and twice
performed with his high-school band under the directorship of Arthur Fiedler.
He earned his spending money playing the electric bass at dances.

When Firth got to college, he felt he had to choose between music and
computers. He had a flaw as a musician, he decided: he would always make a
mistake. And he felt he would never be quite as good at music as he’d want
to be. Programming came easily to him, although he found that he had to
work extremely hard to do it very well. “I hate to say it, but in a way I feel
that I can perfect it.”

He was getting accolades now for his simulator. The team would be
nowhere without it; everyone said so. Firth said: “I can’t say that in all cases
I’m extremely pleased with it. I guess, finally, it is a pretty crafty little thing,
but there’s some real crud at the foundation.”

We were sitting at a bar, one long quiet afternoon. I asked Firth to explain
his abstract machine to me. He tried. “Okay,” he said, “I come to the
simulator with the machine instructions to add two numbers. I also give you
the microcode that tells the computer how to do the ADD. Okay. I say,
‘Simulator, execute the macroinstruction, ADD, at location so-and-so in

simulated memory.’ So I also had to simulate memory. But I also forgot to
mention that when you wrote your microcode you also coded some decode
information, which is information that the IP simulator will use.” He said all
this and more at such a clip, one digression leading to another, that I had to
laugh. He laughed, too. He agreed he was a sucker for a digression.

“You kept it all in your head?” I asked.
“It was just obvious to me,” he replied.
Firth had spent about three months getting all the concepts behind his

simulator straight, and he actually wrote the program in about a month. The
rest of the time he spent on refinements. He could write two hundred to three
hundred lines of code in his mind, but he had a hard time remembering his
own phone number.

Luckily for him, somewhere in the bowels of Westborough existed a
computer, connected to the building’s phone system. Through it you could
program into your own office phone the numbers you called most often.
Forever afterward, you could dial those numbers by punching out a three-
digit code. Firth could remember the three-digit codes. He had completely
forgotten his own phone number. It was a great relief to be able to do so. He
did keep his number on a slip of paper in his desk drawer, though—just in
case he should ever need to know it.

9

A WORKSHOP

WEST USUALLY LEFT for work a little after seven in the morning and set out for
home a little less than twelve hours later. The drive took only about twenty
minutes, but the distance he traveled couldn’t be measured that way.
“Probably somewhere on 495 it all changes,” he said, and it did seem, on at
least several mornings, that somewhere en route toward Building 14A/B he
would grow quiet and a stiffness would gather around his jaw and in his
shoulders, as if he were preparing to lift something. He talked facts when he
got near, if he talked at all. By the time he drove into the parking lot, he had
both hands on the steering wheel. In the evening, he would go out wearing
the same demeanor, but by the time he had turned onto 495 and had been
cruising down the highway awhile, he might take a hand off the wheel and he
could become almost loquacious. One evening, for instance, he said
suddenly, while driving along, that he wished he could bring his guitar to
work and play with some of the youngsters in the group who were musicians.
This seemed to signify that he had crossed the frontier from the land of Data
General to his other domain.

West didn’t smoke cigarettes while he was at work. Away from
Westborough, between sunset and bed, he might smoke a pack or more. Once
he muttered that smoking wasn’t harmful if you didn’t do it at work. Had
Cotton Mather returned as a spokesman for the tobacco industry, he might
have advanced such a theory. Of course, West knew it was silly in any literal
sense, and he uttered it barely loud enough to be heard. Some nights he
would go away from Eagle and play music with friends and acquaintances,
sometimes all night long, and then, fingers raw from his guitar strings, he
would drive right in to work and become once again the tough, grim-looking
manager. One evening that winter I said to him that I didn’t think it was
really possible to be a businessman and a dropout all at once. West said, “But

I do it.”
Ever since he had gone to work for Data General, West had been talking

about quitting. Someday he’d wander off. In a sense, he already did so every
day. West would drive away from Westborough—a place of sharp edges,
functional, new—and twenty minutes later, he would arrive at his farmhouse.
It sat on a country lane. A wooden plaque near the front door announced that
it was erected in 1780. For some years after that, the residents must have kept
busy adding things on. It was a place of many nooks and crannies. An ell
went off at a right angle to the main structure; to the ell was attached a barn;
and to the first barn was attached another. Behind the barns was a tall wooden
silo.

West had previously owned a new and smaller house in the vicinity.
When there was nothing left for him to do in the way of renovations, he had
sold it and had bought the farm, with its leaking roofs and sagging, rotting
barns. In several years he had almost completely restored it. He had had some
tenants once, who on Sunday afternoons would set up lawn chairs outside and
watch him work on the structures. West resented that invasion of his privacy,
but you could understand their interest. He was the sort of carpenter who
transformed things. “Tom likes to do things ‘right’—and I mean quotes
around ‘right,’ ” said his wife. The evidence lay all around. He’d rebuilt roofs
and walls and jacked up sagging girders, and what he had finished had all the
right touches. He’d taken a room in which no corner was square, no wall
plumb, and had transformed it into an airy kitchen. The cabinets looked
perfect; how patiently and carefully he must have worked to fit them to that
room’s slanting walls and quirky corners. In the living room was a lovely
mahogany coaching table with invisible hinges; West had built it from
scratch. His crowning domestic achievement, though, was his basement
workshop.

Most of the basement’s walls were made of fieldstones, laid up dry
originally, but covered now with cement in such a way that you could see the
outlines of the boulders. This masonry had not been done without some
communal effort apparently, for on one wall, in black paint, this question was
inscribed:

What’s A Place Like This Doing To A Nice Girl Like You?

There were several chambers. In one sat most of the machines: a lathe, a
shaper, a radial-arm saw, a band saw, a drill press, a sanding machine, two
grinding wheels (with goggles nearby), and an old belt-driven table saw in
immaculate condition. There was a spacious woodworking bench with a
handsome wooden vise, and, hanging above it, wood clamps, chisels,
backsaws, crosscut saws, coping saws, keyhole saws—you’d touch the edges
of their blades with care.

“A window on West’s soul,” theorized an old friend of his, speaking of
this basement. Need a pencil sharpener? There was one in every chamber,
right where you wanted it to be. Some music? A couple of loudspeakers sat
on shelves in corners of the machinery room. A phone? There it was. A
chair? One for every mood. Beer? The old refrigerator in the corner of the
front chamber was fully stocked. A hammer? Practically every kind ever
invented right in its place. A coat? Under the stairs on wooden pegs hung a
blue denim jacket, an old slicker, a logger’s jacket, a sailor’s blue pea-coat—
all somewhat worn and faded but giving off a scent like laundry on the line.

On posts and basement windowsills were tacked-up aphorisms, mementos
and photographs. One card read: “The appreciation of pleasing decay is an
important one because it is so often neglected.” It’s Easy To Do It Yourself,
said another placard. A hand-lettered wooden sign read: GROUND BONE FOR
SALE. A button reminded you that there had been a “Great Boston Kite
Festival.” A small photograph showed a robed figure astride a camel in a
desert. “What’s this?” a visitor asks, and West pounces: “The first known
picture of Jesus Christ,” he says.

Among miscellaneous items reposing here and there were an old brass
cleat, fishing rods, a compressor, and a rusty something or other from the
olden days of farming. And there was a room for metalworking, suitably
equipped.

The storeroom lay off the machine shop. Along three of its walls, from the
floor to the high ceiling, were shelves of glass jars, recycled coffee cans,
cardboard boxes—all labeled in a firm clear hand, as follows: “Special Car
Tools,” “Gravely,” “Flat Head Lifters,” “Electrical Things,” “Telephone
Stuff,” “Antenna Stuff,” “Shoe Polish,” “Brushes,” “Good Brushes,”
“Rockets,” and “More Rockets.” I turned and there were two tall bookcases,
also stocked with jars and coffee cans, containing, with all the sizes labeled,
“screws,” “washers,” “bolts,” “tacks,” “rivets,” “plugs,” “bearings,” “nails,”

“springs,” and “shaker pegs.” This was an adventurous boy’s pockets. This
was a craftsman’s workshop. It would be a fine place to spend a Saturday
morning. Everything was dusted, swept, sorted, labeled, hung near at hand
and put away in the proper drawer. Could this be the workshop of the man
who wrote on his Magic Marker board at work, “Not Everything Worth
Doing Is Worth Doing Well”?

West often talked about building the “right” machine. He meant “right” in
the commercial sense, emphatically.

But one day, back near the beginning of Eagle, Rosemarie Seale had gone
into West’s office and asked him, “Is it going to be a good machine?”

West said: “Yes, Rosemarie. It’s going to be good.”

As West’s father had risen toward the top of AT&T, the family had
moved many times. There was one year, when West was in high school and
the family was residing in Lincoln, Nebraska, that West could not remember
at all. He did recall that he was always working on things. He once bought a
run-down little sailboat, stripped it to the bare wood, and rebuilt it, until it did
gleam. As a finishing touch, he carved a set of cherry-wood belaying pins.
Then he built a trailer and, behind a succession of cars whose engines he had
also rebuilt, he towed his sailboat around the country—to Illinois, to
Oklahoma City, to Martha’s Vineyard.

He went to Amherst College, in western Massachusetts, where he studied
the natural sciences. He did so without academic distinction, and it happened
that Amherst was just then embracing a new Calvinist fad called the
underachiever program: young men whose brains seemed much better than
their grades were expelled for a year, so that they might improve their
characters. At Amherst, certainly, and possibly in the entire nation, West
became the first officially branded underachiever. It was something he’d
always remember.

One of West’s fondest memories was of playing in the town band with his
father, in the little burg where they resided in Illinois. West played the
trombone then, and had taken up the guitar since. Now, expelled from
Amherst, he spent his year of exile in Cambridge, Massachusetts,
unrepentantly playing the guitar. It was the very early sixties. West played at
coffeehouses. He fell in among folksingers. He knew some of the famous

ones before they became so. When he returned to Amherst the following
year, he spoke of little else.

Trying to name the social change he thought he’d seen beginning, West
would say, “People were leaving Harvard and becoming masons.” As for
himself, he decided to become an engineer. Some of his friends were
astonished. The very word, engineer, dulled the spirit. It was something your
father might be interested in.

“I think I wanted to see how complicated things happen,” West said years
later. “There’s some notion of control, it seems to me, that you can derive in
a world full of confusion if you at least understand how things get put
together. Even if you can’t under stand every little part, how infernal
machines get put together.”

A classmate at Amherst remembered West as “smart—off the charts—but
also naive. No, not exactly naive, but like a boy—uh, romantic. He believed
in pie in the sky.”

Indeed, West did not intend to do any old sort of engineering. He thought
he would find a place in the space program and help to build the electronic
equipment, monumental in its complexity, that would send men to the moon.
On his own, near the end of college, he taught himself some digital
electronics. But a few inquiries led him to feel that the interesting work in the
space program was already spoken for. He managed to get a job with the
Smithsonian Institution instead.

For the Smithsonian, West built and carried all over the world, to various
satellite tracking stations, a series of digital clocks that told exactly the right
time. At a border town in Colombia, the authorities mistook his clock for a
newfangled weapon and threw him in jail. He went to sea. He saw Africa and
Asia. Those were West’s days as a far-wandering engineer, and when he
reminisced about them, he certainly made them sound romantic. After seven
years, however, he quit. He was married now and a father.

Old friends and acquaintances whom West had known back in Cambridge
had become famous or semifamous musicians. He expressed no illusions
about aping their success, but it made him want to take up the guitar seriously
again. He’d support his family with some easy, mindless job. He figured he
had to find a job that would keep him out of the military draft, for this was
during the late sixties, when politicians still talked of nailing the coonskin cap
to the walls of Cam Ranh Bay. A couple of the older engineers in West’s

team would tell the same story; they avoided the Vietnam War by joining
companies that were making things for it.

Because jobs in the field appeared to be numerous and because not far
from his home in central Massachusetts several companies had set
themselves up in the business, West decided to become a computer engineer.
At the Smithsonian he had learned to design digital circuitry—logic design,
as it is called—but he in no way qualified as an engineer of computers. He
had gone to school at a time when students of physics still carried slide rules
and only the rare college had a computer that students could use. So he went
to the local library and took out all of its modest collection of books about
computers and studied them on the deck at the back of his house for about six
weeks; then, when he felt he had mastered enough of the jargon to talk a
good game, and in a hurry, lest he forget everything that he’d read, he talked
his way into a job at RCA.

It did not work out as he planned. “I thought I’d get a really dumb job. I
found out dumb jobs don’t work. You come home too tired to do anything,”
he said. He remembered a seemingly endless succession of meetings out of
which only the dullest, most cautious decisions could emerge. He
remembered watching himself play with his thumbs beneath the edges of
conference tables for hours and hours. Near the end of his time at RCA he got
to work on projects that interested him. He saw a few patents registered in his
name. He became what he’d pretended to be, a real computer engineer; but
by then, RCA had lost a fortune trying to compete with IBM and was getting
out of computers. The time to change jobs was upon West again.

Data General lay nearby. He went in for an interview. An executive
sneered at his credentials, asked him what made him think he could build
computers, and then hired him. Someone in Personnel told him to go see a
certain engineering-team leader and find out what his problem was, and in no
time at all West found himself working on a state-of-the-art computer, the
first Eclipse.

West remembered working on the prototype of the Eclipse. Most evenings
the company’s president, Ed de Castro himself, would appear in the lab,
eating a Fudgsicle. The soft-spoken de Castro wouldn’t say much. He’d ask a
few questions, ones that seemed remarkably acute to West. The questions and
the man’s mere presence made West feel, again and again, “This project is
really important.”

Then one night, without any warning, de Castro said to him softly, “Got
that fucking pig working yet?”

West was startled, then amused, and finally, though he could hardly
explain it to himself, aroused. No. But I will, he wanted to say to de Castro.

For some time during the debugging of the first Eclipse, West was ill
every morning before work—a psychological form of morning sickness,
perhaps. But when the job was done and he went to the factory floor and saw
a long file of brand-new Eclipses come gliding down a conveyor belt, some
great delight, which he would describe as “almost a chemical change,” came
over him, and what he wanted most of all to do then was to do it all over
again someday, only better.

To the observant Rosemarie, it seemed that West was always planning.
She began to believe that he planned almost everything that happened during
the season of Eagle. As time went on he seemed to grow skinnier and
skinnier before her eyes, as if the job and all that planning were somehow
consuming his flesh. Once in a while she would look into his office. He
would be staring at some paper and wouldn’t notice her standing in the
doorway. She would watch for a moment. “Why is he doing this?” she
wondered. “He belongs in the north woods somewhere, canoeing and fishing
and appreciating nature. He doesn’t belong here.”

Long afterward, at a time when she found herself talking about West in
the past tense—“Geez, I hate to talk about him in the past”—the question of
West’s motivation still had importance for her. Most people, she reasoned, do
jobs because they are told to and might get fired if they don’t obey. But
certainly West didn’t have to drum up Eagle and waste away over it. Indeed,
from her perspective, it really did seem as though the company didn’t want
the project undertaken at all. “So why is he doing it?” she asked.

“There’s a big high in here somewhere for me that I don’t fully
understand,” said West. “Some of it’s a raw power-trip….

“The reason why I work is because I win….
“Realistically, I’ve got some stock in this company. I gotta help keep it

afloat for a while.”
Someone once suggested to West that he wanted to build Eagle out of

love for chains and whips. West lay awake several nights worrying that it

might be so.
“I’m sitting here burning myself up and doing it because I like it. You

wouldn’t have to pay me very much to do this,” he said one night while he sat
fretting, sick to his stomach over the slow progress of the debugging.

Later: “I’m trying to talk myself into quitting….
“Not many people around here would admit to being in business,” he said.

And: “What makes this all possible is doing this and putting money on the
bottom line and not having to go all the way with the capitalist system….”

“What makes it all possible is the kids.”
When he talked about his reasons for wanting to build Eagle, West might

have been trying to figure out how to get one of his lieutenants to sign up. He
said he wished someone could explain his reasons to him. He said once, “De
Castro knows what makes me go.” He smiled. “The bastard.”

He also said: “No one ever pats anybody on the back around here. If de
Castro ever patted me on the back, I’d probably quit.”

I traveled with West to New York. We stopped at a grocery store in which
the cash registers were equipped with one of those devices that reads the
price of an item automatically, a computerized checkout system. This one
wasn’t working well. West got down on his hands and knees and poked his
head in under the cashier’s counter to have a look at the thing.

The clerk made her mouth an O.
When West came out, dusting off his hands, he explained that he had

helped design this particular model when he had worked at RCA. “It’s a
kludge,” he said grinning.

The clerk had some trouble figuring what the beer we bought ought to
cost, and as we left, West said, out of her earshot, “Ummmmh, one of the
problems with machines like that. You end up making people so dumb they
can’t figure out how many six-packs are in a case of beer.”

West didn’t like digital watches particularly. Anyone who dared to consult
such a chronometer and in his hearing say, “The exact time is…,” could
expect to receive the full force of his scorn, for being such a fool as to think
that a watch was accurate just because it had no hands.

He harbored suspicions about people who kept their own computers to
play with after working on computers all day. In his office, so tidy it looked
stark, West’s only filing cabinet seemed to be his wastebasket, and although
he did hook up a computer terminal in his office on a couple of occasions

during the seasons of Eagle, he never kept it there for long. He couldn’t wait
to get the computer out of his sight—or so it seemed to Rasala. Rasala was
amused, but he also wondered how in the world West got along without daily
access to a computer.

West didn’t seem to like many of the fruits of the age of the transistor. Of
machines he had helped to build, he said, “If you start getting interested in
the last one, then you’re dead.” But there was more to it. “The old things, I
can’t bear to look at them. They’re clumsy. I can’t believe we were that
dumb.” He spoke about the rapidity with which computers became obsolete.
“You spend all this time designing one machine and it’s only a hot box for
two years, and it has all the useful life of a washing machine.” He said, “I’ve
seen too many machines.” One winter night, at his home, while he was
stirring up the logs in his fireplace, he muttered, “Computers are irrelevant.”

Building them and, especially, getting them out the door still interested
West, though. In the basement was an engineer named Dave Bernstein, by
general consensus a brilliant circuit designer. Though just twenty-seven,
Bernstein was running the group that designed microcomputers. A veteran of
FHP and EGO, labors that he never got to complete, he felt eager to finish
something. So that winter Bernstein built a new microprocessor entirely by
himself. He got the last bugs out of it early one Sunday morning and on the
instant let out a whoop, a cry of pure joy—his triumphant howl, appropriately
enough, echoing down empty hallways.

West had known such exultation himself—the joy derived from mastering
machines, both building and repairing them. My wife mentioned to West one
day that our son’s record player had broken down. “Where is it? I’ll take it
with me,” snapped West, adding with a look that my wife found a little
frightening, “I can fix anything.” What the thing was, whether a car’s engine
or a computer, did not matter; but since computers were among the most
complex of all man-made things, they had always seemed to him, he said, to
pose interesting challenges. Eagle, in this regard, was something special.

In his office one relatively serene afternoon, West said he had heard that
IBM had canceled plans for a certain new computer, because the machine
promised to be so complex that any given engineer would need more than a
lifetime to understand it fully. “I don’t know why they didn’t just build the
thing and see what it would do,” said West. Eagle’s complexity fell far short
of that mark, but it was complicated enough to defy single-handed efforts. “I

always wanted to do something like this,” he said. “Build something larger
than myself.

“Among those who chucked the established ways, including me, there’s
something awfully compelling about this,” West said of building Eagle.
“Some notion of insecurity and challenge, of where the edges are, of finding
out what you can’t do, all within a perfectly justifiable scenario. It’s for the
kind of guy who likes to climb up mountains.” A couple of engineers in the
group had taken up the rather dangerous hobby of rock-climbing. West may
have had them in mind, but it sounded as though he was thinking of the
scaling of Everest.

On the wall of West’s office, beside his chair and a little above his head,
were the pictures of some of those old computers, the machines that he could
not bear to examine. Were they there to comfort him or to keep him nervous?
“Everyone assumes that this one will work because all those others have,” he
said, rolling a pencil around in his thumbs. The fact of a string of previous
successes, though, could imply the imminence of failure. “Realistically, you
gotta lose one sometime,” he said with a small smile.

I was lying in West’s guest bedroom very late one night. His wife and two
daughters had turned in long ago. On the perimeter of sleep, I heard West out
in the living room take up his guitar and sing. He sounded rusty, but his
voice, a tenor, could carry a tune nicely. He did not sing the sorts of songs
that I gathered he played currently with his friends at their jam sessions, but
once-popular folk songs—“The Banks of the O-hi-o” and the like. Those are
seductive ballads. If you listen to them long enough, you can start believing
that your way in life is strewn with possibilities.

10

THE CASE OF THE MISSING NAND GATE

LATE IN APRIL, after the first deadline had come and gone, Ed Rasala was
sitting in his cubicle, examining his third, revised debugging schedule. Down
the hall past his open doorway came Dave Epstein, one of the best of the
Hardy Boys, whose humorous look, a grin that almost envelops his eyes, can
by itself provoke smiles. Epstein was carrying a wire-wrapped board. He was
holding it in both hands like a tray, with the side containing all the wires
facing up. The thing looked terrible, the very picture of a kludge. For out of
the nest of wires on the board, three little strands of wire stood straight up in
the air, attached to nothing, with little bits of adhesive tape wrapped like tiny
flags to their loose ends.

Rasala looked up, saw Epstein and his cargo, closed his eyes, shook his
head, and looked again. “Hey!” Rasala cried.

Epstein stopped. He poked his head in around the partition and, grinning,
made as if to offer the terrible-looking board to Rasala.

Rasala put his hands on his desk and buried his face in them.
It was just another routine day down at debugging headquarters.
In theory, it would be possible to test fully a computer like Eagle, but it

would take literally forever to do so. The veterans in the Eclipse Group
maintained that most computers never get completely debugged. Typically,
they said, a machine gets built and sent to market and in its first year out in
public a number of small, and sometimes large, defects in its design crop up
and get repaired. As the years go by, the number of bugs declines, but
although no flaws in a computer’s design might appear for years, defects
would probably remain in it—ones so small and occurring only under such
peculiar circumstances that they might never show up before the machine
became obsolete or simply stopped functioning because of dust in its chips.
Big bugs in the logic of a machine, however, and even what might seem to be

fairly small ones, have to be found and cast out in the lab. The hardware of
modern computers is remarkably reliable, and needs to be. A computer like
Eagle does a cycle of work in 220 billionths of a second. If it tended to fail
only once every million cycles, it would be a very unreliable contraption
indeed.

At first, the Eclipse Group worked on Eagle board by board, trying to
make the machine functional in the most basic ways. This took months, and
might have cost more time if Carl Alsing and Rasala had not finally
persuaded West of the need for micro-diagnostic programs. Then they turned
to the higher-level diagnostics, and the real fun began.

According to the Eclipse Group’s theory of debugging a computer, you
did not try to prove by exhaustive analysis that the machine was in all its
details logically correct. You exercised the computer instead, and fixed it
when it didn’t work. The higher-level diagnostics had to provide the
exhaustive analysis, in other words. They were crucial. They had to exercise
Eagle strenuously. They had to be nasty, unfair and subtle, and not full of
errors themselves.

A long list of programs that tested 16-bit Eclipses had been worked out
over the years. The first ones on the list were fairly easy tests. They got
progressively harder. Eagle would have to run all of them, and when it did
they’d be able to say it was a bona fide 16-bit Eclipse. But it would also have
to demonstrate that it could be a 32-bit Eagle, of course, and the diagnostics
that would test Eagle’s 32-bit-hood didn’t exist when they started debugging.
This worried Rasala. “West has everything in the company moving on. The
printed-circuit boards are getting built. If there is a major flaw in Eagle, I
want to find out about it now and minimize the impact.” Rasala wanted 32-bit
diagnostics that were tough and thorough and he wanted them right away.
But the Diagnostics support group was producing them very slowly. Rasala
feuded with Diagnostics. Fear made him angry. He shouted and he
threatened, but none of it seemed to do much good. Those diagnostics came
in gradually.

In the lab one day a sign appeared. Someone must have plucked it from
the side of a road. It bore a picture of the national bird and the inscription
EAGLE ASSOCIATES, REAL ESTATE. Another small device sat on top of Coke
beside the microNova. This little thing had been designed as an aid to
debugging Eagle, but no one ever got around to debugging the device itself.

Remembering the assemble-it-yourself kits of electronic equipment that have
been the starting points for many an engineering career, someone attached to
the undebugged debugging device a label that said HEATHKIT. Soon these
things lost their power as jokes and became part of the furniture of the lab.
When they had started debugging, the wires on the backs of the boards had
all been blue. They made their changes with red wires. The backs of the wire-
wrapped boards got redder and redder. Slowly, painfully, Eagle was
becoming an Eclipse.

Once in a while someone would find a problem, fix it temporarily, and
move on. The engineer would plan to come back and make a proper repair
but might forget about it, and weeks later it would cause some mysterious
failure. Inevitably, this happened. They lost some time that way. Through the
winter, the wire-wrapped boards held up well, but come April, constant
handling was beginning to make some of the many mechanical connections
unreliable. Wires and the sockets in which the chips were housed began
coming loose once in a while, causing “flakey” failures. These occurred
erratically and were often hard to diagnose; as the debuggers liked to say, it’s
hard to fix something when it’s working. Here and there a bad chip impeded
their progress. “Just stuff you never account for in a schedule,” Rasala said.
“You assume it’s not gonna happen, and it always does.”

In addition, the Eclipse Group’s engineers were finding plenty of bugs in
the logic of their design. “We went with an imperfect design,” said Rasala.
“We knew we were pushing it.” So his schedules slipped and slipped, and
slipped again. “The way to stay on schedule,” he said, “is to make another
one.” So far, though, West could say, as he almost always did when asked
about the machine, “Nothing fatal yet.” Rasala would say, “It’s comin’, it’s
comin’.” Usually he would add, “There’s still a good chance that we’ve
totally blown it.”

For many months, no single variety of problem fed his worry, just
whatever the next diagnostic program happened to turn up. But Rasala told
me early on, “I believe there’s always a focal point in any machine.” And by
May, it had identified itself as far as he was concerned. It was the part of
Eagle called the Instruction Processor, the IP. Perhaps this was, at last, the
bogeyman.

West had helped to debug the first Eclipse and some of the subsequent
models by using an oscilloscope to look inside the machines. “An

oscilloscope,” said Jim Veres of the Hardy Boys, “is what cavemen used to
debug fire.” The Hardy Boys had much better tools, computers essentially, to
debug their new computer. Rasala liked to tell them, “You guys don’t know
what fun it is to bring up a machine.” In fact, however, you probably couldn’t
build a computer of Eagle’s class without the help of several functioning
computers, and especially not without the help of the logic analyzers.

One crucial difference between Eagle and earlier machines involved the
parts of Eagle known as accelerators. These were primarily the System Cache
and the IP, both of which were designed in order to eliminate the bottleneck
between the machine and its storage. Think of a program as a list of
assembly-language instructions and data for the instructions to apply to. A
computer without accelerators runs through this list in a halting manner. It
must execute an instruction, then seek out in its memory or in peripheral-
storage devices the next instruction, bring it back, figure out what it requires,
and finally execute it. It can take a lot more time to retrieve the next
instruction and prepare it for execution than it does actually to execute it. So
if you can arrange to have those first two operations performed at the same
time, you can greatly increase the speed of your computer.

That, approximately, was the theory behind the IP. While it is telling the
computer what instruction to execute right now, the IP is, in a sense, making
assumptions about what the next several instructions in a program will be. At
any give time, the IP will have one instruction in execution, one instruction
“decoded” and prepared for execution, one instruction in the process of being
prepared and one or more instructions already retrieved and about to be
decoded. The IP has a fairly small storage compartment of its own, in which
it keeps instructions that are likely to be required next and also instructions
that have been used recently. Computer programs tend to repeat themselves,
or to “loop.” In the best case, when a program loops, the IP already has the
next instructions in its storage; therefore, it doesn’t have to send out for them,
and time is saved. The IP is a complex device.

The other main accelerator, the Sys Cache, also makes assumptions about
what the computer will be asked to do next. It contains a storage
compartment considerably larger than the IP’s; like the IP’s, the Sys Cache’s
storage consists of expensive memory chips that operate with great speed.
Among other roles, the System Cache tries to keep handy commonly used
instructions and data, so that if the IP doesn’t have the necessary information

to order up the next step in a program, it can get it quickly from the System
Cache. In this situation, if what’s needed is in the Sys Cache, time is saved; it
would take much longer for the Sys Cache to get the necessary information
out of Main Memory and then pass it on to the IP, because in Main Memory
the chips operate at relatively slow speed and there are a great many
instructions and data to sort through.

Accelerators represent one clever, well-known means of gaining speed,
and they’re well worth the hardware if what’s needed is a fast computer. But
from the point of view of debuggers, accelerators can be infernal devices, not
because of the quantities but because of the kinds of problems they create.
Inconsistency between them is one of the deadly species of crocks.

To visualize Eagle’s memory system, imagine a funnel. At the narrow end
are the IP’s storage compartment and other small compartments located in
other parts of the machine. The Sys Cache is a wider storage, and the boards
of Main Memory are widest, the funnel’s mouth. Main Memory holds a lot of
data and instructions, including an exact copy of everything in the Sys Cache
and in the IP. Exact copy is the crucial term.

The accelerators are forever throwing out blocks of information and
bringing in new ones, making their assumptions according to certain fixed
and clever rules. They must do a fair amount of internal housekeeping in
order to make sure that they are always consistent with Main Memory and
with each other. If, for instance, a given block of instructions is residing in
both the IP and Sys Cache, both must contain identical copies of that block.

But suppose the Sys Cache is changing the contents of its storage
compartment, and at just the wrong moment some electronic event
intervenes, in some unforeseen way. Suppose further that this electronic
event causes one or the other of the accelerators to err in its internal
housekeeping. And suppose this error causes the IP to contain a block of
instructions that “looks” the same but is in fact slightly different from the one
that the System Cache contains. When this happens, the machine is prepared
to fail. There’s a time bomb set inside it. The IP is going to order the rest of
the machine to execute the wrong instruction, sooner or later. Usually, it’s
later, and that’s the rub. The machine will fail while running a diagnostic
program, the debuggers will hook up their analyzers and get pictures of it
failing, and nothing they see will account for the failure, because the real
problem, the ticking bomb, was set somewhere far back in time, along the

winding road of that diagnostic program.
This was the worst sort of problem that they were encountering that

spring.

Early one morning in the middle of May, Chief Sergeant Detective of the
Hardy Boys Ken Holberger turns his brown Saab down the road toward the
red brick fortress of Westborough. It’s a cloudy, hazy day. He notices,
though, that muted sunlight comes in at the top of his windshield. Back when
the debugging began, it was dark when he drove in and dark when he left.
The slow advance of the morning sun across his windshield, when he makes
the turn into the parking lot, has been one of the principal ways by which he
has kept track of outside, planetary time. As for other events in the world at
large—wars, famines, rock concerts—he is a little out of touch. When he
goes home after a day on a difficult case, and sits down in his armchair and
picks up the newspaper, he can’t even read. He just stares at the front page.

Most of the group are working too hard now. Around this time, one of the
Hardy Boys tells his wife that Data General provides its employees with
alimony benefits, as well as medical insurance. And the funny part is, his
wife believes him. “We’re deep in the debug. Yeah, underground,” says
Holberger. “Burn-out city,” he says.

Holberger wears a trim black beard. In his routine actions, the way he
walks down a hall, the shape of his mouth when he gets ready to talk,
Holberger seems to embody assertion, as West does, but more smoothly than
West. Holberger has the appearance of one to whom all things come easily.
You have the feeling that he couldn’t look messy if he tried. You’d never see
a vinyl penholder in his breast pocket, and you won’t find him hanging
around the basement after work to play Adventure or discuss machines. He
says he doesn’t spend any time thinking about what people do with
computers. “A sense of the applications is somewhat missing, but it doesn’t
matter,” he says, and he smiles slightly. “We say the ultimate goal is to build
a machine to run a multiprogramming reliability test. But I understand that
people who buy computers do run other programs on them, like Adventure
and Star Trek and things.”

Holberger joined the company three years ago and since then has risen
from the status of a recruit to a position of importance; he has chief

responsibility under Rasala for the details of the hardware of this major CPU.
He is the right man for the job; by general consensus, he is the only member
of the group with anything like a complete understanding of the new
computer’s hardware.

Holberger and Rasala are good friends. Rasala seems to feel something of
an older brother’s admiration and affection toward Holberger. “Holberger’s a
sharp cat,” says Rasala. The faults that Rasala finds in him have nothing to do
with ability, but with the fact that Holberger sometimes moves too quickly
and makes careless mistakes.

And there is the problem of Holberger’s style in the lab, for which Rasala
is willing to accept much of the responsibility. Holberger is known as one of
the tough guys in the basement. In part, this is the result of long hours and
strain. Holberger says that when he can hear his mind buzzing from caffeine
he tends to be his most abrupt. He also says he rarely brings frustration home;
he gets it out at work, and when he’s really angry, he takes it out on Rasala,
because he knows that’s safe. He doesn’t waste time listening to people who
aren’t making good, relevant sense to him, just in order to be polite. If he’s
working on a problem with several other engineers and feels that too many
are involved, he’ll simply ignore what one or two of them have to say and
eventually they’ll get angry and go elsewhere. In local parlance, he’s a
“gunslinger,” one who “shoots from the hip.” If you can’t get what you need
from some manager at your level in another department, go to his boss—
that’s the way to get things done. He learned this style from Rasala, who
learned it from West. They take the same general attitude toward their work.
“It doesn’t matter how hard you work on something,” says Holberger. “What
counts is finishing and having it work.”

Like Rasala, Holberger worries sometimes about playing the tough guy.
He says he often feels sorry after he’s been abrupt with one or another of the
Hardy Boys, and he is consciously developing tact for the lab. “Let’s see, I’m
a little confused here,” he tends to say now, when what he means is, “You
guys are all wrong.”

Holberger is married but has no children yet. He says he has more than
enough money right now. He has also received some company stock. Stock
options, he notes, blur issues of salary; “Data General turns people into
capitalists,” he says. Holberger likes the local atmosphere. The jeans, West’s
casual dress, remind him, he says, “that we’re not at IBM.” He likes not

having to punch a time clock. But he knows that his freedom from company
clocks doesn’t stem from corporate altruism. “They don’t want us to know
how many hours we work. If we did, they’d have to pay us a lot more….
But,” Holberger says, “I don’t work for money.”

For the last two years, he has been involved in projects with the flavor of
crisis about them. He worked on the M/600 with Rasala and went without a
break into Eagle. He has been saying of late that he doesn’t want to take on
any more jobs like this one, but he’s also been saying that he isn’t sure he
means it. “It’s very challenging and very interesting,” he says. “There’s a lot
of, uh, prestige, I would say. Perhaps I like some of the things I say I don’t
like. It’s consuming. I don’t know. Perhaps I don’t like it. But jobs like this
aren’t real common. In other companies people with our experience aren’t
allowed to do this, I think.” He wears a wry smile. “Of course, that’s how
Data General gets cheap labor.” Holberger has noticed that there is almost no
one in the basement involved in CPU design who is over thirty-five. What
happens to old CPU engineers? Holberger is twenty-six now, and though not
exactly on his deathbed, he is curious about what a computer engineer does
“afterward.” Maybe, he says, efforts like this one can only be conducted by
the very young.

“Like war,” I suggest.
“Yeah, really,” he says, laughing.
Holberger’s father was an engineer, and so are three of his four brothers.

He went to Clarkson and earned a master’s degree at the University of
Illinois, a Jerusalem of computer engineering, back then one of the few
universities in the world where a student could do research in the hardware of
computers. He hung around an old IBM machine in high school, and was
taking things apart virtually from his infancy. It’s something he still does.
Recently, when he bought a digital watch, he took it apart. Same thing with
his new programmable calculator. “I usually get things back together, too.”

Significant parts of Eagle are mainly of Holberger’s own devising. He
thrashed out the plan for the implementation of the memory management
system in many long, loud sessions with Wallach. “He’s a good play on
Wallach,” says Rasala, proudly, feeling that he himself could not have held
his own with Wallach, as Holberger did. Holberger designed most of the IP in
Eagle. He regrets that it isn’t two years earlier, for if it were, Eagle’s
hardware design might represent an advance in the state of the art and not just

an example of it. But Holberger feels that he and his colleagues have taken
some original approaches. “There were some general ideas out there, but the
actual implementation of the IP—with all due modesty—I took some vague
specs and thought it up.” In fact, he made the IP run faster than those specs
envisioned. As for the question of whether the IP will ever work right, he
isn’t worried about that. The way he looks at it, the whole machine’s a
crossword puzzle that he and the rest of the designers thought up, and now
they just have to solve it. “I’m getting quite good at it,” he says. “I can track a
problem back into the twilight zone quite well.”

With a touch of regret, Holberger puts the spring morning behind him and
makes his way briskly through the basement—still mostly empty at this hour.
As expected, when he gets to the lab, he finds Jim Veres there, sitting in front
of Gollum. And right away, Holberger’s back into it.

Last night, per Holberger’s instructions, both Coke and Gollum were left
running the diagnostic program called “Eclipse 21.” Some weeks before, the
debuggers ran this program and the machine failed sporadically. They didn’t
closely examine the failure. They decided that it was probably a flakey—
most likely a loose connection or “noise”—and they went on to other
diagnostic programs. Now, however, the machines have successfully
negotiated all of the basic Eclipse diagnostics except for Eclipse 21. So it’s
time to go back and clean up the problem, whatever it is—the failure that
might be noise or a loose connection.

One characteristic of the diagnostic programs is extreme repetitiousness.
Each test contains a number of subtests, each one of which consists of dozens
of instructions—ADDs, subtracts, jumps, loops, Skips On Equal and so on.
The program has the machine perform one of these subtests dozens of times,
each time with different data, and then tells it to go on to the next subtest.
When the last of these subtests is completed, the diagnostic program directs
the machine to go back and repeat the process all over again. The entire
program, including all the repetitions of the subtests, is repeated a large
number of times—say, a hundred—before one so-called pass is complete.

If, during all these calisthenics, the machine fails to execute an instruction
properly, the program directs it to confess the act by sending an error
message out to its console and then tells it to go on with the exercise. The
debuggers can come in after the machines have been running all night and
find out right away, by placing an order through the console, how many

passes of the program the machine has run and how many times it has failed.
Veres has already done this. He tells Holberger that Gollum ran 921

passes of Eclipse 21 last night, with only 30 failures. And Holberger makes a
face.

In this context, 921 is a vast number. It means that any given instruction
in the diagnostic program may have been executed millions of times. Against
921 passes, 30 failures is a very small number. It tells them the machine is
failing only once in a great while—and that’s bad news, because it’s hard to
locate the cause of a failure that crops up only once in a while. As they say,
the first step in fixing something is getting it to break. The problem could just
be a loose connection or noise, though. But while noise and loose
connections can cause sporadic failures, they usually do so erratically, in no
discernable pattern. And when Holberger asks Veres how Coke performed
running Eclipse 21, Veres tells him that the story is the same as it was with
Gollum: “Nine hundred and twenty-one passes, thirty failures.

“I’m still willing to call it a noise problem,” says Veres. But Veres is
thinking, “Either that noise is remarkably consistent or we’ve got a real
problem in the logic somewhere.”

Holberger thinks it would be nice if noise was the culprit. This bug in
Eagle has the feel of an unpleasant one. So, thinking wishfully, they concoct
a few theories about noise. Finally, Holberger says: “Okay. Time to fix it.”

They don’t need to say much to each other for a long time after that.
Between Holberger and Veres there exists a kind of technical understanding
that outruns the powers of speech. Most Hardy Boys share this specialist’s
ESP to some degree. It’s a feeling that some good chess players say they
share with worthy opponents, a kind of mind reading—what Holberger calls
being “in sync.” To a degree, all of the Hardy Boys are loners; all say they
usually prefer to work by themselves. But Veres and Holberger have found
that working together, they do produce results. To Veres, Holberger is “very
quick,” and because of his superior knowledge of Eagle’s design, Holberger
can often “fill in the details” for Veres. Holberger, for his part, is impressed
with Veres, and calls him “one of the stars.”

Veres was given responsibility for the IP, and he designed a large part of
it with Holberger’s assistance. And when the debugging began, Veres quickly
picked up technique and found his own style for the lab. Holberger feels that
by now Veres, too, can find his way adroitly into the twilight zone of Eagle.

None of the Hardy Boys hesitates to contradict what he considers to be a
wrong technical statement, no matter who utters it. Veres can be abrupt in the
lab, too. He is a tall, fairly husky young man with a stern glare. You notice
this sometimes when talking to him—he’s looking at you and he’s really
listening; it makes some people nervous. His managers’ confidence in him is
tempered only by their feeling that he works too hard. That is how they
express it.

Veres owns his own small computing system and sometimes after a long
day in the lab he will go home and tinker with it. None of the old hands
would dream of doing that, but some of the recruits are hobbyists. When the
veterans in the group were growing up, computers were quite rare and
expensive, but Veres went to school in the age when anyone with a little
money and skill could make up a small personal system. Veres says that what
he does at home is different enough from what he does at work to serve as
recreation for him. At work he deals with hardware; when he’s at home, he
focuses on software—reading programming manuals and creating new
software for his own computer.

Veres has no real complaints about the work; on the contrary, his only
gripe is that lately his managers have been scheduling the work in the lab in
such a way that he can’t always get his hands on Gollum for as long as he
wants. He calls computers “the ultimate toy.” He says: “I like to tinker. I like
to build things.” In his senior year at Georgia Tech, he got interested in
digital clocks. “I built four or five. Then it was computer terminals. I built
one. Then I decided I oughta have a computer to hook it up to. So I got a
microprocessor and then I figured it was not worth much without an
operating system, so I wrote a small operating system. I did a number of all-
nighters building this computer junk.”

As it happened, Veres hated the first computer he dealt with. It was a big
machine that many people shared, and it just spat out work; it was a cold,
distant bureaucrat of a computing system, a machine to which you couldn’t
talk back. Soon afterward, though, he got to use a small Hewlett-Packard
minicomputer; it stood alone and one could deal with it directly. “That made
it friendly.”

Holberger and Veres hook the probes of two logic analyzers to various
parts of Gollum, and they set the analyzers so that they will snap their
pictures when the machine fails. They call this “putting on a trace.” They

back up the program just a little ways from the point of failure; they run it,
and it doesn’t fail. Another clue. It suggests that they may be facing “a cache
interaction problem.” In a machine with accelerators, history is important;
often it’s some complex combination of previous operations that leads to a
failure later on. So now Holberger and Veres start the diagnostic program all
the way back at its beginning and go out to the cafeteria for a cup of coffee.
About fifteen minutes later, when they have returned to their chairs in front of
Gollum, there is a quick flash on the screens of the analyzers. The machine
has failed. They have their pictures. They pull up their chairs and start
studying snapshots of signals.

They are trying to figure out exactly what Gollum is doing when it fails.
The pictures and the printed “listing” of the steps in the diagnostic program
give them the answer.

“Okay. It’s doing a JSR and Return.”
In essence, the diagnostic program is telling the machine to take a short

detour off the main road of the program. Gollum is supposed to “jump” away
from the stream of instructions it’s executing and go get a new instruction.
This new instruction should direct the machine to go right back to the place
where it was, before it took the jump. This small series of operations is a little
hurdle, a trick question, a spot quiz, in the midst of a subtest of the diagnostic
program.

Further study also tells them that the machine did in fact jump to the right
instruction, and it did return to the right place; but when it got there, it
executed the wrong next instruction. This tends, as they put it, to implicate
the memory system, and particularly the IP and System Cache.

“Is it hitting the I-cache?” says Holberger.
That’s the next question. The IP’s small storage compartment is known as

the I-cache, and what they want to know is whether or not the instruction that
the machine is supposed to return to and execute, after its jump, is residing in
the I-cache. The IP saves instructions that it has been executing recently, so if
the program has called for this instruction a short time ago it will probably be
in the I-cache now, at the time of the failure. They look at more pictures and
from them infer that the IP is in fact “hitting” its cache. And they go on,
examining with the analyzers the contents of the I-cache. They discover that
it has the wrong instruction at the address where the right one should be.

The conversation that leads them to this conclusion is characterized by

alarming brevity; even a skillful computer engineer from another project
wouldn’t be able to follow it. A rough translation may help. Imagine that
Gollum’s memory system is organized like a town in which every house has
a mailbox. In the computer, there is a large number of mailboxes, each with
its own unique address. Inside the Main Memory, there are thousands and
thousands of these mailboxes. Identical copies of some of these mailboxes,
labeled with the same address numbers and holding the same contents, are
also in the System Cache. And a smaller number of mailboxes are in the I-
cache. The diagnostic program has directed Gollum to jump to a particular
mailbox, to a particular “address.” At that address, in that mailbox, is an
instruction that tells Gollum to go to another mailbox at another address. The
IP looks through its cache and finds that it has a mailbox with this second
address. This second address is indeed the right address, but the instruction in
the mailbox is the wrong one. In fact, what’s there is an “error message,” an
instruction that causes Gollum to confess failure on the system console,
which sits beside Holberger and Veres. It’s a postman’s nightmare.

Time dissolves in the lab on cases like this one. When Veres and
Holberger look up from their analyzers, it is already two in the afternoon. In a
moment, Jim Guyer comes in, puts down his motorcycle helmet, pulls up a
chair, and starts asking questions.

Talking about Guyer some time before, Rasala has outdone himself in the
enthusiasm of his speech, as if portraying the person he is describing:
“Guyer’s stubborn. Oh, is he stubborn! And he has one amazing flaw. Ask
him a question about any problem, any problem at all, and he will get down
to the most boring, low-level detail.” Rasala took a breath and went on:
“Guyer’s a mechanic, he likes to fix things. Holberger gets an esoteric notion
of an idea and then starts implementing it. Holberger gets a thrill out of
making it work, but also out of inventing it. Guyer’s more of a craftsman.
Guyer can build it and refine it and he works for the pleasure of getting the
last bug out of it. I identify with Guyer more probably than with anybody in
the group. I don’t think he thinks he’s a computer genius either, but just a
damn good engineer.”

Guyer wears a brown beard that makes his face appear to rest inside an
oval frame. He is much given to laughter. He abandons himself to his laugh;
it’s a high-pitched rapid one, the kind that makes the laugher close his eyes
and shake his head. He often leaves his shirt unbuttoned down to the

breastbone. A bachelor, he likes to go rock-climbing. He was one of those
whom West must have had in mind when he said that computer engineering
was the sort of thing that appealed to people who liked to climb up
mountains. Guyer says, “I was considered wimpy in high school.”

He grew up in a suburb of Boston—not one of the very fancy ones, nor
one of the tough ones, but a place in which athletic ability sometimes
superceded other virtues. In his high school, he says, there were “the athletes”
and “the nobodys,” and he was a nobody, partly because he got very good
grades and partly because he had asthma. He had trouble running the mile,
but, he says, “I used to surprise people in gym class.”

Guyer, too, is the son of an engineer, and was a tinkerer practically from
birth. “I took apart clocks and all kinds of stuff. Lawn mowers. I loved taking
things apart. Loved putting them back together, too. Just to look inside and
see how it works. Hands on, that’s what I liked to do.” He went to MIT as an
undergraduate, determined to learn something and also to have a good time,
and he says he accomplished both ambitions. He got mostly A’s at MIT and
went to Northwestern for a year of graduate school.

He had taken up with computers in high school; his school had an old
IBM machine, too. He was going to study physics in college, but it bored
him. He preferred engineering; he liked touching things, especially, by then,
electronic ones. During one summer, he worked for a defense contractor in
Boston. “I didn’t especially appreciate that,” he says. But the money was
good and, more important, the job gave him a chance to work on something
that “had never been done before,” on state-of-the-art electronics. He enjoyed
this aspect of it immensely. He ignored the ultimate fruits of the project; he
didn’t bother to get a security clearance, and so afterward he wasn’t ever
allowed to look at the thing he had helped to make.

Guyer has been at Data General for three years, ever since graduate
school, and he likes the pace. He doesn’t care a hoot, he says, about having
“the president come down and shake my hand.” And he doesn’t think much
about money, though he won’t turn it down. He seems in his busyness,
among the happiest of the group. Amazed at his equanimity, one of his
colleagues has said, “The thing about Jim is, you can’t make him mad.” And
he has become a favorite of both West’s and Rasala’s, mainly because of his
attitude toward the debugging. “He started getting into everyone else’s
boards, and when I saw that—bang!” West has said. It’s true. At the moment

Guyer appears to be much less interested in the board he helped to design, the
IOC, than he is in some of the other boards, particularly the IP. Partly, that’s
because he knows that right now fixing the IP is more important than fixing
his own board, and Guyer, who has staked several years on the Eclipse
Group, feels protective toward it. “If we don’t succeed, we can kiss the
Eclipse Group good-bye,” he says. He also likes to work on the IP because he
doesn’t know how it works. “To me, if I can’t do it, it’s more of a challenge,”
says Guyer.

He has spent entire nights alone in the lab, studying schematics and
microcode listings in an attempt to fathom the IP. Guyer takes naturally to the
night shift. He keeps microcoders’ hours—which is to say, peculiar ones—
and he has amazed even some of Alsing’s midnight programmers. Jon Blau
remembers seeing Guyer in the lab at four-thirty one morning, surrounded by
several logic analyzers, all of them hooked up to Gollum. Blau was on his
way home at this hour, but after a full night of work on the IP, Guyer was
evidently still going strong. “I would start sniffing something around ten-
thirty at night,” Guyer says. “And I just could not let go. I didn’t know how
to fix the problems that I saw, but I couldn’t leave until I had a picture of
them.”

Often, Guyer leaves around three in the morning. A few hours later, Veres
comes in, and the first thing he does is to read Guyer’s notes in the logbook
and study the pictures Guyer has taken on the analyzers. Surprisingly often,
that’s all it takes. Veres knows right away what’s wrong and how to fix it.
Veres and Guyer make a marvelous debugging team, but only when they
aren’t working together.

One time, Rasala came into the lab, gestured across the room at Veres and
Guyer, and, smiling, said, “The two Jims.” They were sitting face to face in
front of Gollum, having an argument about some fine technical point. Guyer
was saying, “No, no, no, no, no!” He proceeded to describe his own theory;
his hands made bowls in the air, wrapped imaginary packages, scrubbed
invisible windows. Veres sat still. You could see the muscles in his jaw
flexing and unflexing. When Guyer’s spiel wound down, Veres began his
retort in a soft voice, telling Guyer that his theory was completely
preposterous. Guyer interrupted him. Veres clamped his own mouth shut.
Obviously, their temperaments don’t always mix. Perhaps they have too
much in common. “Guyer and I are very headstrong,” says Veres. “And we

each want to do it our own way. We get annoyed and lose our trains of
thought if it’s not being done our own way.” Veres also says, later on, to
gales of laughter from the other Hardy Boys: “Jim and I don’t debug well
together. He asks too many questions that I can’t answer.”

Veres designed part of the IP, including some of the part known as the I-
cache, and Guyer has made this piece of hardware his number-one suspect in
almost every debugging case. “There was a time,” Veres will say later, “when
if anything went wrong, Jim would take out the I-cache. If Gollum ran out of
paper, if it went up in smoke, he would take out the I-cache…. I didn’t
appreciate Jim pulling the I-cache all the time.”

Taking out the I-cache means essentially disconnecting it from the rest of
the machine. If the machine fails with the I-cache in place but works when
the I-cache is taken out, then the problem must lie with the I-cache. That’s the
theory. But sometimes it’s false. Taking out the I-cache makes Eagle very
tolerant of faults in other pieces of hardware and in the microcode. “There
was a time when everyone was claiming that the IP was wrong, and that put a
lot of pressure on me,” says Veres. “And from time to time I did end up
proving that the problem was not on the IP.” But, true, the IP and its cache
have been found lying at the bottom of a number of devilish failures, and this
bothers Veres. It does not matter that the IP is a much more complex piece of
hardware than many others in Eagle, nor that when he helped to design it,
Veres was truly a novice and pressed for time. Like everyone else in the
group, he feels what Holberger calls “the peer pressure,” which leads to an
absolute determination not to be the one who fails. Under the circumstances,
it is annoying to have the IP blamed every time something goes wrong. Veres
helped to design this piece of the computer. It is, as he says, part of him now,
and he doesn’t like to see it get picked on unfairly.

For all of their similarities, though, Guyer and Veres like and appreciate
each other, and when alone, each will brag about the other’s skill. And for
short stretches they can in fact work together. They are doing so now. The
second shift is just coming in. They’re in that transitional period when the
first shift, hot on the trail of the problem and reluctant to leave it, and the
second shift, eager to get into the case, mingle and work together for a time.
Holberger and Veres brief Guyer on the problem. They tell him that at the
point of failure the I-cache contains the wrong instruction at the right address.
There are, they figure, two possible culprits, the IP or else the System Cache.

Laughing about it, the three decide to interrogate the System Cache first.
Early in the debugging someone wrote in the logbook that the Sys Cache

was “working perfectly.” Since then, when others have blamed failures on
this board, Mike Ziegler, the man who designed it, has retorted by quoting
that line. “The Sys Cache is working perfectly.”

“It was just a matter of degree after that,” says Holberger, who once made
the same claim for the IP. “How perfect was the System Cache?
Occasionally, we had to make it more perfect.”

This is, of course, just another friendly way to compete: prove that the
problem lies on a board that someone else designed. Although Guyer
designed neither the System Cache nor the IP, he, too, has a small incentive
to hope that this problem lies with the Sys Cache. He has, he says, “been
beatin’ pretty hard on the IP lately.” He knows that Veres feels annoyed with
him. So for once, Guyer doesn’t even suggest that they disable the I-cache.
Instead, by common consent, they start hooking their probes to the System
Cache. They look at a few pictures but receive no immediate enlightenment.
Tired out now, after more than ten hours in the lab, Holberger and Veres
depart and Guyer is left alone with Gollum. He spends the night with it.

It is very late. As usual, Guyer is surrounded by logic analyzers, and he is
peering at their screens, when suddenly he touches his mouth, wheels around,
and starts flipping through one of the big books on the table. “A flash,” he
says.

The diagnostic programmer, in writing Eclipse 21, has assigned data and
instructions to specific mailboxes in the computer’s memory system. From
time to time, however, the programmer has switched the game, and has
written what is known as “dirty code.” What this means is that the program
sometimes changes the contents of a mailbox; it moves an instruction, some
data, or both from one mailbox to another. Guyer has been studying
addresses. When the machine fails, the target instruction—the one it’s
supposed to execute—is supposed to be in the mailbox with the address
21766. Earlier on, somewhere back in the diagnostic program, Gollum
successfully performs the same series of operations that it later fails to
execute. And what is interesting is that when it does these operations
correctly, the target instruction is actually located at mailbox number 21765.
This is Guyer’s flash. He takes up the huge, bound logbook and records a
hypothesis. The following is a rough translation:

The diagnostic program originally puts the target instruction at address
21765, and then, sometime later on, it moves the target instruction to 21766.
But the IP never gets word of the change, though the System Cache does.
Now, sometime after the target instruction is switched from mailbox 21765 to
21766, the program directs Gollum to execute the instruction at 21766. The
IP receives this command and looks through its cache. It says to itself, in
effect, “Mailbox 21766? I’ve got that address and there’s an instruction in it.
Let’s run it.” But in the I-cache, the target instruction is still at 21765, and
mailbox number 21766 contains an error message. In short, the I-cache
contains an outdated piece of memory. Why didn’t it get updated along with
the other parts of the memory system? Maybe, Guyer writes, the System
Cache is to blame. The System Cache is supposed to know exactly what is in
the I-cache. If an instruction or data gets moved to a new address, the System
Cache is supposed to tell the IP to throw away the outdated mailbox and get
the new one, the one with the target instruction in it. Somewhere back in the
program, Guyer figures, the System Cache lost track of what was in the I-
cache. It forgot that the IP had the target instruction in mailbox 21765, and
so, when the change was made in the location of the target instruction, it
never told the IP to get rid of the old, outdated mailbox. Guyer likes this
hypothesis. He records it with mounting enthusiasm; and describing it later,
he repossesses the feeling, speaking rapidly, gesturing with both hands. Then
he stops, puts his hands on the table, and says, “Of course, it was completely
wrong.”

It’s very late now, past midnight. Guyer has an analyzer hooked up to the
bus—a transmission line, as it were—that carries signals to and from the
memory system. He is tracking, somewhat at random, farther and farther
back through the diagnostic program, taking pictures of addresses that get
generated. Just before he knocks off, he comes across another occasion in
which Gollum performs the JSR and Return and hits the target instruction
successfully. In this instance, the target instruction is residing at mailbox
number 21772, in the same “block” of addresses as it is located later on in the
program when the computer fails. Now Guyer knows that in the course of
this long diagnostic program, Gollum is being sent to the same general area
of memory, many times, to find the target instruction. There’s no flash this

time, though. Guyer feels “sort of neutral.” “It’s beginning to look more
complex,” he is thinking, on his way out of the lab.

Veres arrives around dawn. He has made this a habit ever since he started
to get the hang of debugging. Coming early these days assures him of several
hours alone with Gollum.

In the back of Veres’s mind still lies a small suspicion that the problem
might after all be noise. And now—much to Guyer’s delight, when he finds
out later on—it is Veres himself who disconnects the I-cache. Then he runs
the program past the point of failure, and everything works. He puts the I-
cache back in and once again Gollum fails. This doesn’t prove that the IP is
to blame, but it does tend to eliminate noise as a suspect, once and for all,
because noise tends to cause failures unpredictably, with no discernable
pattern.

Veres turns to the logbook and Guyer’s notes. Guyer’s made some
progress. He’s proven that the program directs Gollum to the particular target
instruction on a number of occasions. He’s shown that the program changes
the address of this target instruction many times, and also that the program is
switching the contents of mailboxes in one fairly small region of memory. It
looks to Veres like one of those problems involves a time bomb, and one way
to tackle that sort of crock is to follow the clues back to the culprit. Veres sets
out methodically. First, he finds out exactly where in the program the failure
occurs. It’s on the fourth pass, at the 158th iteration of the subtest that
contains the misaddressed target instruction.

Next, Veres examines addresses rather different from the ones Guyer
sampled. These addresses are called “tags.” The mailboxes in the machine’s
memory system are organized in neighborhoods, called “blocks.” Each block
contains 256 mailboxes. Like each mailbox, each block has a unique address,
which is a number. This number is the tag. Veres sees in his analyzer that at
the moment when the machine fails, the tag of the block of mailboxes in the
I-cache is 21. But the tag for what should be the corresponding block in the
System Cache is 45. The two tags should be the same. Veres goes searching
to find out which one is right. The answer should reveal whether the culprit is
the System Cache or the IP.

Holberger has arrived by this time and has pulled up a chair. Veres,
meantime, has set up the equipment for his search. He’s hooked up a couple
of logic analyzers in such a way that they will record the tag numbers in the

System Cache and IP, both at the time of failure and in each of 256 previous
ticks of the computer’s clock. He’s run the program all over again, up to the
point of the failure, and now he’s looking back, at one picture after another.
This promises to be a long and tedious morning at Gollum. Holberger
retreats, to work with Dave Epstein at Coke.

Nothing turns up. By the time Guyer comes in, Veres hasn’t found a
single new clue. Holberger holds a short conference. “We need new ideas.
We’re gonna defer it.”

The Microkids have just delivered a new batch of rewritten microcode,
and Guyer agrees to work on testing that for the evening. Veres goes home,
with the two tag numbers—the 45 and the 21—rolling around in his mind.
Which one is right? It’s a simple enough question, and obviously there’s an
answer. It’s just a matter of finding a way to get it.

“I think that in the lab Veres is the best of the college kids,” Rasala says.
“The reason I say that—he’s driven. To solving a problem. His whole
chemistry, his whole environment is that he’ll just go after it and after it. His
attitude is that if he can’t get time alone on the machine to work on a
problem, he’ll come in at four in the morning. So he can do it his own way.
And his own way is often right.”

Veres himself feels that by the time debugging begins, designs should be
more nearly perfect than this one was. A bug in the logic of a design, though
discovered and fixed in the lab, stands as a slight reproach to the designer.
Not that Veres doesn’t enjoy debugging. He just doesn’t like mistakes. And
as Rasala has noticed, he doesn’t just work casually to find and fix a mistake,
he attacks.

So it’s up early the next morning for Veres. He doesn’t want any
interference; he wants time alone with this bug. To Veres, debugging the
machine—particularly the IP, the part that he helped to design—has become
“a very personal thing…. A computer, to people who designed it—it’s part of
them. You can almost feel what’s wrong with it.” This problem feels like a
time bomb. But how to find it?

“I get quite a lot of work done in the morning while taking a shower,”
says Veres. “Showers are kinda boring things, all things considered.” Now in
the shower, before leaving for work, he conceives a new approach.

Yesterday he tried to find out whether 21 or 45 was the correct tag by
looking back from the point of failure. Evidently, though, the answer lies

farther back than an analyzer can look. So why not start searching from the
other direction, forward instead of backward? He’s done something like this
before, on a similar problem. He’ll run the program up to the fourth pass, and
then every time Gollum performs the JSR and Return, he’ll have the machine
stop so he can get a picture with the analyzer and a printout on the system
console. It’ll take a while to go through the program that way. It’ll be like
searching every luggage locker at Kennedy Airport. It’s a good thing he’s up
early, because Holberger might not stand for this. It’s not the most elegant
approach, but sometimes there is no elegant approach. He’s willing to try
this, he’s decided by the time he gets to the lab.

A few hours later Holberger drives into Westborough. The sun is in his
eyes this morning, and he wonders in a detached sort of way where it will be
hitting his windshield when they finish this job. Debugging Eagle has the feel
of a career in itself. Holberger isn’t thinking about any one problem, but
about all the various problems at once, as he walks into the lab. What greets
him there surprises him. He shows it by smiling wryly. A great heap of paper
lies on the floor, a continuous sheet of computer paper streaming out of the
carriage at Gollum’s system console. Stretched out, the sheet would run
across the room and back again several times. You could fit a fairly detailed
description of American history from the Civil War to the present on it. Veres
sits in this midst of this chaos, the picture of the scholar. He’s examined it all.
He turns to Holberger. “I found it,” he says.

At the 122nd iteration of the subtest in question, the I-cache contains the
block of instructions with tag number 21. Millions of ticks of the computer’s
clock and thousands of instructions later, at iteration 151 of the subtest, Veres
has observed the System Cache instructing the IP to replace tag number 21
with tag number 45. The System Cache has proved its innocence. The IP, by
inference, must have disobeyed the order; at iteration 158 the I-cache is
caught in the act of still harboring tag number 21. “Which, I’m very sorry to
say, is wrong,” Veres says. The IP, his board, is the villain.

Some problems are easy to find and hard to fix; some are hard to find and
easy to fix; some go both ways. They have seen and will continue to
encounter permutations of all three. This one was hard to find. It happens to
be easy, almost trivial, to repair. Now Holberger and Veres know where the
failure occurs. They move fast. Seen working at such a moment, they might
remind you of a couple of airline pilots, in the cockpit of their big jet,

preparing for takeoff—heroes of technique, flicking switches with both
hands, reading dials, and talking to the tower all at once. Veres and Holberger
play the program up to iteration 151, the place where the time bomb gets set,
where the Sys Cache tells the IP to get rid of the invalidated block of
instructions and to bring in tag 45. They hook up analyzers and look at a
number of different kinds of pictures. When, in fairly short order, the crucial
picture appears on the screen of one of the analyzers, they don’t need to
perform any exegesis at all.

“There it is.”
“Yup.”
They see the IP throwing out tag number 45 and keeping the old, invalid

tag 21. A few more pictures show that the IP is, quite literally, getting its
signals crossed. The IP gets from the System Cache the signal to throw away
tag 21, but before it can obey, the signal from the Sys Cache gets changed by
another signal coming from another part of the machine. The solution lies in
delaying the arrival of that second signal, so that the IP will always have time
to clear out an old block before it’s asked to do something else.

The solution takes the material form of a circuit called a NAND gate,
which reproduces the “not and” function of Boolean algebra. The part costs
eight cents, wholesale. The NAND gate produces a signal. Writing up the
ECO, Holberger christens this signal “NOT YET.” He’s very pleased with
the name. Schematics he’s seen from other companies use formal, technical
names for signals. The Eclipse Group, by contrast, looks for something
simple that fits and if they can’t come up with something appropriate they’re
apt to use their own names. “NOT YET” perfectly describes what this signal
does. That’s the Eclipse Group’s way, Holberger notes. It’s the general
approach that West has in mind when he says, “No muss, no fuss.” It’s also a
way—a small one, to be sure—of leaving something of yourself inside your
creations.

This is fun. They install the NAND gate that produces the NOT YET
signal, and Holberger writes in the logbook, “With this ECO installed,
Eclipse 21 runs 10 passes.” Just one more routine chore remains. They have
to make certain that this change doesn’t foul up something else in the
machine. So they start rerunning all the other various diagnostic programs
that Gollum has already passed, and everything is proceeding nicely, when all
of a sudden the console starts scratching out a message.

One of the other diagnostic programs has produced a failure.
“Oh, no.”
“We didn’t do it,” says Holberger. “We didn’t do it right.”
He and Veres go to lunch. Holberger feels ill and picks at his food. When

they return, they hook up a trace on the new failure, but without much
enthusiasm. They take some pictures. It looks as if something complex is
going wrong, but they can’t immediately tell what, and they don’t feel like
opening up another long search right away. In part, their feeling stems from
weariness. But there must also be something instinctive about their reluctance
to dig into the new problem. For it seems they’ve forgotten to do something
basic, and in a moment, Veres remembers.

Veres takes out the NAND gate. He runs the failing program. The
machine still commits the new failure. So it’s not the NAND gate that did it.
Greatly relieved, smiling now, Holberger points out that they have the IP
board out on the “extender.” The board is hooked up to Gollum but it’s sitting
in a small frame of its own, outside of the main frame of the machine. This is
standard debugging practice, but boards aren’t made with extenders in mind,
and in some cases a perfectly good board won’t work while out on an
extender. With nimble fingers, they put the IP back in its proper place among
the other boards, and the failure no longer occurs. Now Gollum successfully
negotiates all of the basic Eclipse diagnostics, including Eclipse 21.

They’ve reached a milestone, but one that they thought they had reached
before. There’s no celebration, no sitting around Gollum with their feet up on
analyzers, savoring the victory, rehearsing the battle. Plenty of diagnostics
stand before them. Much trickier ones, in fact.

“A feeling of accomplishment” is what Veres says he has. “But then
again, there’s lots more feeling of accomplishment to go.”

11

SHORTER THAN A SEASON

IN THE LAB, at the bench along the far wall, the other members of the night
shift are bending low over wire-wrapped boards.

“Oh no. Not me. I did that last night,” Josh Rosen has said to Ed Rasala.
Now stillness has fallen over the room. The prototypes’ cooling fans, the
crickets of this place, drone on and on. Rosen stands all alone next to Coke.
He looks rather small among the machinery. Rosen has very black hair, cut
short enough to withstand a first-sergeant’s inspection. His complexion,
though naturally swarthy, still manages to reveal that he has been spending
his days indoors. He is wearing corduroy pants, a plain cotton shirt with a
button-down collar and no necktie. He often wears a sports jacket to work,
even in the lab, and his black, laced shoes and the upper quadrant of a white
T-shirt showing at his throat make his dress seem more conventional than a
typical Hardy Boy’s uniform. He could by his looks be any young age, from
late adolescence to his mid-twenties; in fact he is twenty-four. Periodically,
he raises one hand to his mouth and nibbles at his nails, while he works with
the other.

Rosen, who designed the board called the ALU, is trying to get it to
perform addition. It is not a large exaggeration to say that everything else in a
computer exists in order to bring information swiftly to the ALU for
manipulation; and for the ALU, adding is the mechanical equivalent of
breathing. But this evening, whenever the diagnostic program has asked the
ALU to add two packets of bits, the ALU has sent out a wrong answer and
then performed a series of incomprehensible actions. “It goes,” as Rosen likes
to say, “to never-never land.” At this moment, he is trying to take a picture
with the logic analyzer of what’s going wrong inside.

A straight white line runs horizontally across the little blue screen of the
analyzer. From a cabinet in a corner, Rosen gets an object almost exactly the

size and shape of a 45-rpm record and he inserts this “floppy disk” into the
tall disk-drive machine that stands nearby Coke. Lights flash immediately on
the disk drive. Rosen turns to the console and types a short message. At once
the console starts typing by itself. A scratchy sound, which lasts just a
moment, then stops. Rosen bites absentmindedly at the nails of his left hand
as he leans over and reads what the console has typed. Nails still at his lips,
he turns to the analyzer.

Something has happened. The straight white line that was running across
the little blue screen has rearranged itself into a jagged shape, like a diagram
of two teeth on one side of a zipper. Rosen is staring at the picture, his nails
raised to his mouth. Slowly, still staring, he rotates his hand and takes most of
his knuckles in his teeth. For a long moment, he holds this position, frozen
like the image on the screen.

It might be a painting of a nightmare by Goya. Your eye is drawn from
the young man’s face and the hand resting in his teeth, to the jagged line on
the screen, which is in fact a picture of an electronic event that took place, in
infinitesimal time, just a moment ago. Though it is a common sort of picture,
often seen in the lab, all of a sudden it has become dreadful. But who can say
why?

From the moment they started designing the computer, engineers were
dropping out. The reasons varied, from the feeling that the machine would be
a kludge, to disappointment over positions in the group’s pecking order.
Some may have tired of the competition within the group, of what Ken
Holberger called the peer pressure: “If I screw up this, then I’ll be the only
one, and I’m not gonna be the only one.” Some may have had trouble
keeping up with the others. A few did not participate in the group’s social
life, and some seemed to drift away from the project. Building Eagle wasn’t
the best of times for everyone.

Rosen came to the group in the middle of the summer of 1978 and went to
work on the all-important ALU. He felt constrained to start designing right
away, before he could really study the architectural spec—before, indeed, a
complete spec existed. A few months later, in August, he decided that he had
chosen to use the wrong sort of chips. He told Rasala he wanted to redesign
the whole board. Rasala replied, “There isn’t time.” In effect, Rosen felt,

Rasala was saying: “This’ll probably work. Put a Band-Aid fix on it.”
In December Rosen brought in a design that called for far more chips than

it was supposed to contain. West assigned another engineer to examine
Rosen’s work—a necessary act from West’s point of view, but a form of
censure for Rosen. A while after that, Rosen underwent his review, a periodic
ritual at Data General in which your boss evaluates your performance and
sometimes gives you a raise. He was handed a report card less flattering than
he was used to. It was the only unflattering one he had ever seen in his brief
but distinguished career as a builder of computing equipment.

Rosen felt that West and Rasala were treating him unfairly. “They backed
me into a corner.” Certainly, they gave him a challenging task: he was to
make an ALU that would perform certain kinds of arithmetic faster than
VAX and yet occupy only one board. Bob Beauchamp would say later on
that this just couldn’t be done. In fact, West and Rasala eventually came to
the same conclusion. They decided to sacrifice certain features and keep the
ALU on one board. They had Rosen proceed. In any project such
compromises inevitably occur, and in the end, according to Beauchamp, the
ALU turned out nicely. “I think Josh did a damn good job on that board
personally. There are some very slick things in that design,” said Beauchamp
—and he was in a position to know, because he had written some of the
microcode that primarily ordered the ALU around and because, at the time he
offered his opinion, he was himself designing an ALU for another computer.

When the Eclipse Group finished designing Eagle and began to debug,
West told me: “Josh is doing all right. He’s hangin’ in there.” West never
said that to Rosen. But a few kind words just then could not have cured what
ailed the young man.

Rosen had come over from Data General’s Special Systems Division,
which produces equipment for customers’ special needs. “I was the star at
Special Systems,” he said. “I got all the sexy jobs. I went to the Eclipse
Group and I wasn’t treated like a star.” Ken Holberger, about the same age as
Rosen and endowed with roughly the same amount of experience, occupied
that position among the Hardy Boys, if anyone did. Clearly, Rasala
considered Holberger to be the team’s stellar designer. Rosen, by his own
account, found himself competing with Holberger. He wanted to be “the
driving force” behind Eagle’s hardware. He was used to being in control of
entire designs. Over at Special Systems, he had often felt free to pursue pure

technical excellence. Three weeks after joining the Eclipse Group, he said to
himelf, “This is all wrong.”

Over at Special Systems, Rosen had felt that his boss was also his friend. I
remember following West into the lab one evening early in the debugging.
Bound on some urgent mission, he strode briskly. Rosen turned around. He
saw West coming. Grinning, he intercepted West, saying: “It does an
increment now. So we know that it can add.” West did not seem to hear him.
He flicked out his hand as if brushing something away and strode on. “The
man never said hello to me after he hired me. Literally never said hello!”
Rosen cried. “I wanted to feel I was part of what was going on, but with West
the only channel of communication was through Rasala, and Rasala, I felt,
was a pretty narrow filter. Everything was on a need-to-know basis.”
Mushroom management came as a shock to him. “I felt I had no more rights
than an oscilloscope.”

Rosen described his own habits of thought as eclectic. He liked to think
up fresh approaches, and he liked to talk about them. Something of a
perfectionist, he felt offended when he was told to perform quick-and-dirty
repairs. Rasala, who had the job of enforcing haste, felt that Rosen might
design and redesign the ALU forever if he let him. He took seriously Rosen’s
casual, digressive talk about other ways the thing might be done, and he
really dreaded it. “We can’t think about that,” he would often snap when
Rosen came to him with some new idea. Rosen would walk away to
contemplate Rasala’s “sheer rudeness.” They had almost nothing in common.
One was big, gruff, athletic, and intent on getting the machine out the door on
time. The other was of a more delicate sensibility, and eager to make comely
designs.

Rosen had grown up near the University of Chicago. He did not care for
sports. “I have a sort of very antiathletic point of view. That’s the sort of
thing nice Jewish boys don’t do. I was captain of a softball team in college
and we used to get beaten by fifty runs and be proud of it.” He said, “I’m not
much of a team player, I guess.” This was a defect in his character, he felt,
but only in the strange context of the Eclipse Group. He did not hide his
attitude. That made Rasala angry. He spoke gruffly to Rosen. Rosen’s interest
in working on others’ parts of the machine, never high, declined still more.

Rosen belonged to the generation for whom computers made up part of
the scenery. He himself might have had block diagrams of ALUs encoded
somewhere in his genes. Like practically everyone else on the team, he
started becoming an engineer at about the age of four, picking on ordinary
household items such as lamps and clocks and radios. He took them apart
whenever his parents weren’t looking. At ten he turned to rockets. First he
made them out of match heads. Then he experimented with more powerful
fuels. At twelve, he got some gunpowder in the mail from a firm of dubious
repute and concocted his most powerful missile. He set it off electrically,
from his “blockhouse,” a basement stairwell. The rocket ascended some
distance and exploded, loudly. A few minutes later, he saw a police car turn
into the alley behind his home. “I gotta go visit grandma in Sheboygan,” he
told his parents that very evening.

He went to an extremely competitive high school, the University of
Chicago’s Lab School. “If you had seven hundreds on your College Boards,
you were at the low end of the class.” In college he had no confidence until,
thinking he’d like to have a stereo—and being “cheap,” as he put it—he
decided to learn how to make one himself, and to that end enrolled in a
course in basic electronics. “I totally crushed the course,” he remembered. He
became a physics major. For his senior-year thesis he began to build a device
called a floating-point processor; and suddenly he was getting A’s in all his
courses. “No one knew what I was doing. No one understood it. They
thought, ‘Hey, he must be something.’ ”

The little processor was his first concoction in computers, and he
remembered it fondly, as some remember old girlfriends or certain football
games. “It wasn’t a bad little box at all.” He felt gratitude toward that first
processor, because it enabled him to graduate magna cum laude.

Rosen went on to Northwestern, to earn his master’s degree in electrical
engineering. He spent his summers building electronic gear. While still in
school, he built a pattern recognition processor for Fermi Labs, worked on an
earth station for Fairchild Space and Electronics, and designed a signal
processor, also for Fairchild.

Data General recruited Rosen by promising him interesting work, and he
got it. The first truly commercial product he designed was something known
as a cluster controller, a kind of computer terminal, which he called Hydra.
After it had been built and shipped, a small microcode error cropped up in it,

and Rosen’s boss sent him to California to make the repair. Out west, Rosen
was ushered into a room and saw a dozen people using the machine that he
had designed. The sight made him tremble. It took his breath away. He felt
scared. “My God!” he thought. “Don’t use one of those. Why don’t you use a
real terminal?” He felt thrilled. “That’s something I designed. That’s my
machine. That’s not Data General’s. That’s me.

“You don’t get to see that very often,” Rosen said. “But that’s the biggest
satisfaction of all.”

He was only twenty-two, and he had done it all—except that he had never
helped to build a commercially important, big and brand-new computer. He
expressed an interest in doing so, and the word got back to the Eclipse Group.
They recruited him; he had fine credentials. Then, of course, everything went
sour for him. But perhaps his personal catastrophe had started earlier. Maybe
he volunteered for Eagle looking for a way out of a malaise already upon
him. He thought that was probably the case.

Rosen said that when he first came to Data General a few years before
Eagle, the staffer at Personnel told him, “We know how you fellows work,
and we will remind you if you forget to take your vacations.” But, he said,
they never did remind him. Probably, it wouldn’t have mattered if they had.
He went to work at Special Systems, and in his first year there, he was
assigned so many important, challenging projects that he not only forgot to
take his vacation, he also failed to take a weekend off. What would obtain in
the Eclipse Group also held at Special Systems. “There was no question of
deadlines. You’d already missed it, whatever it was.” He worked many
eighty-hour weeks—without extra pay, of course, but that wasn’t the issue. “I
had a lot of control over the things I did, and the price was a lot of pressure.
If I spent only a sixty-hour week, I felt intensely guilty.”

He told himself that he was having the time of his life. During his second
year at Special Systems, he began to remind himself of this with some
regularity. “Josh,” he would say to himself, “you’re designing the sexy
machines.”

The dialogue with himself continued when he joined the Eclipse Group
and began working on Eagle. “You’ve always revered the people who built
the NOVA and the PDP-11. Now you’re one of them. You’re the guy you
always wanted to be,” he said in his mind.

“So why,” he asked himself, “am I not happy?”

By the time I saw Rosen standing in front of the logic analyzer in the lab,
he did not have to ask himself that question anymore. He did have some
friends in the company, but few of any sort outside of work. How could he
have made any? He had spent nearly half of all the hours of all the days and
nights of the last three years at work.

His experience had made him feel that Data General, more than any of the
other companies he’d heard about, exploited “child labor—kids right out of
school.” “It’s something of a sweatshop. It’s expected that you’ll ruin your
health for the company.” But he knew it wasn’t that simple. He went on: “It’s
sort of self-imposed. Everybody’s trying to prove themselves. Eventually you
burn out.”

Now he thought to himself: “I have no social life. Nothing.” He looked
back on his career and saw that ever since adolescence he had never strayed
very far from work. He needn’t have taken a job every summer; his parents
would have given him spending money. But that was what he had done. “I’d
been doing this all my life, it seemed. In college, you know, physics majors
are masochists and proud of it. Constantly pulling all-nighters in the lab or
the computer centers. But you find yourself becoming really sort of narrow.”
When he went to some of the parties that members of the Eclipse Group
threw, he found himself and most everyone around him talking about
computers. That was nothing new, but now he also found himself thinking:
“This is a party. We’re not supposed to be talking about work.”

He suspected that Rasala and West were suffering from the same disorder
as he, their irritability and rudeness toward him the symptoms of their
burning out. As for himself, he had no doubt. As the debugging continued, he
felt the pressure in his stomach. It hurt every day. This sort of work, even the
occasional bad stomach, used to be fun. “Part of the fascination,” he said, “is
just little boys who never grew up, playing with Erector sets. Engineers just
don’t lose that, and if you do lose it, you just can’t be an engineer anymore.”
He went on: “When you burn out, you lose enthusiasm. I always loved
computers. All of a sudden I just didn’t care. It was, all of a sudden, a job.”

Rosen went on working, through the winter and spring, peering into Coke
with logic analyzers and doing a creditable job of repairing errors in his own
board. But debugging Eagle had long ago stopped being fun, and from time
to time, when Rasala teased or reprimanded him, or when he simply couldn’t
face that tangle of wire and silicon anymore, he would take advantage of

Carman’s escape valve and go away from the basement for an afternoon or an
evening. Sometimes, before he left, he would leave a note behind, on top of
the terminal in his cubicle—usually a faintly humorous note that would
nonetheless alert his friends to what had happened in case he didn’t come
back this time.

With an old friend, Rosen had once visited what he called “a very liberal
arts college” in Vermont. He was strolling through something known as “an
alternative-energy farm,” when a young woman, bare to the waist, walked by.
“She was,” Rosen said, “a miracle of biological engineering.” He continued:
“I was so stunned that I walked into the door of a geodesic dome. Although
blood was pouring down the bridge of my nose, I was completely oblivious
to it.”

Now, one day back at Data General, his weariness focused on the logic
analyzer and the small catastrophes that come from trying to build a machine
that operates in billionths of a second. On this occasion, he went away from
the basement and left this note on his terminal:

I’m going to a commune in Vermont and will deal with no unit of time
shorter than a season.

12

PINBALL

SOMETIMES THEY SLOWED DOWN, usually to wait for some new part. At the
onset of such pauses, Ken Holberger felt as though he had poked his head up
through a trapdoor. He noticed once again that other groups in the basement
had more space for offices than they. Take a look at this lab, they said to each
other. It was little. It was noisy. Remember those nights back in February
when some of the guys wore coats while working on Coke and Gollum?
Well, nowadays, you didn’t have to go outside the lab to know that summer
had arrived.

One of the Hardy Boys brought to the lab a thermometer. When the
temperature reached eighty-eight degrees, Holberger propped open the door
to the outer hall. “So we can get the hot breeze from the hallway.” On an
evening visit, Carl Carman frowned to see the door opened—it was a breach
of security—and he kicked it shut. Their vice president had closed it and they
did not dare reopen it. But then the thermometer went right off scale. It was
too much. The Hardy Boys walked out, and finally West burst from his
office. “West went into forest-fire mode,” said Holberger. At long last, West
got Maintenance to repair the lab’s cooling system. The Hardy Boys ended
their wildcat strike.

The Microteam had their own computer, but they noticed that when
someone was using the simulator, Trixie ran ever so slowly. We could use
another computer, they said. But don’t bother to ask, they told each other;
after all, we had to battle West just to get Trixie.

But the Microteam was lucky compared to the Hardy Boys. “This group
has built four models of Eclipses,” said Holberger, “and we haven’t even got
one for our own use in the lab. We have to share Woodstock with every other
group except for Bernstein’s, which has two computers of its own.” It got so
bad during crises that Holberger had to send out emergency warning

messages. This was how it worked:
Holberger runs into a problem—he needs to reprogram a PAL. To do that

he needs the services of a functioning computer. He hurries to his cubicle and
turns on his terminal, which is hooked up to the Eclipse called Woodstock.
But a message appears on his screen saying that the program will not run,
he’ll have to wait—too many other engineers are using Woodstock now. But
Holberger can’t wait. So through his terminal he broadcasts an
EMERGENCY WARNING MESSAGE. Throughout the basement, on every
screen of every terminal using Woodstock at the moment, this message now
appears. It says, in effect, “Shut down your terminal at once because the
system is crashing.” From his terminal Holberger can watch the various
responses to this false alarm. Some engineers just go on working, he notes
with amusement. “The cynical and jaded,” he thinks. But enough other users
shut down their terminals for Holberger to run the PAL program.

Holberger grinned. “I have the feeling that’s the kind of behavior West
approves of.”

That summer, in Mini News, one of two in-house company papers, an
article appeared bragging that Data General was spending a larger percentage
of its profits on research and development than almost any other company in
the industry—more, indeed, than the vast majority of American companies of
every sort. Holberger saw the article. He took it into West’s office. “Hey,
Tom, where’s it all going?” Was the lion’s share going to North Carolina?
Some suspected it was—but only in moments like these, the competition had
receded so much.

One of the team decided he’d like to have his own business card. Others
liked the idea. They felt they deserved them. After all, some other groups in
Westborough dispensed personal cards to their members. So some of the
Eclipse Group took the request to Carl Alsing, who agreed to ask West. They
waited outside. “Sorry,” said Alsing, when he came out of West’s office.
“Tom says no.”

“How come?”
“He just says, ‘No.’ ”
Another story made the rounds: that in turning down a suggestion that the

group buy a new logic analyzer, West once said, “An analyzer costs ten
thousand dollars. Overtime for engineers is free.”

Dave Peck was at one point sent to Data General’s semiconductor facility

in California to perform what he considered to be “a near impossible job.” He
didn’t get it done. Upon returning to Westborough, he wanted to go back to
take another crack at it. He took his request to Alsing. He and Alsing went to
West.

“I’m not gonna send Peck out there for another vacation on company
time,” said West to Alsing, in front of Peck.

Peck had an odd, some said a corny, sense of humor, and a few in the
group resented it sometimes. “He’s having a good time, while we’re all
burning up,” said one of them. But others thoroughly enjoyed him. Peck had
heard West use disdainfully the phrase “software mentality.” Peck, who had
come from Software, believed this mentality existed and that he himself
possessed it. “If you’d walk into Software, there was paper all over the
walls,” he said. Around the time when Data General stood accused of burning
down a competitor’s factory, Peck remembered, a picture of de Castro
appeared on a wall in Software: the bottom edge of the photograph was
charred and a sign below asked, Would You Buy A Used Car From This
Man? Peck’s own office was full of posters. DATA GENERAL FREE FOOD AND
BEER, said one; he had picked it up at a company picnic. “I like a noisy
room,” he said.

Peck was slightly plump, with a thin mustache that he often stroked.
Years before, when he was working in another department, he had to deal
with a peer whom he considered to be incompetent and a meddler. Feeling
sorely provoked, Peck one day said to this engineer, “You’re an asshole.”
Ordered by his boss to apologize, Peck went to the man he had insulted,
looking sheepish, and said, “I’m sorry you’re an asshole.” He never talked
back to West, however. “I don’t know, I guess I never thought of him as an
asshole. Just mean.”

But Peck got hold of a poster advertising the movie Lord of the Rings. The
poster depicted most of the characters in cartooned form, and Peck labeled
them. He made the Hobbits Microkids—“They’re kinda cute, you know”—
and he put his own name beside one of the heroic-looking figures; the skinny,
treacherous character, Gollum, he christened “Tom West.” Peck hung the
poster right next to Woodstock. But afraid that West might see it, and not
knowing what would happen if he did, some of the younger members of the
team moved the poster to an obscure corner, out of sight.

Many of the team, especially some of the Hardy Boys, said they felt

comfortable around their division’s vice president, Carl Carman. He visited
the lab almost every morning and evening now. He asked them about their
problems. He knew all their names. But most of them, when they ran into
West in the hallways, got the feeling that their immediate boss did not know
nearly so much about them. “He’ll look off in another direction as he walks
by, and you never see him smile.” When West did speak to the masses, some
felt afraid.

It seemed peculiar to some of the team. Here they were laboring mightily
on the most crucial project in the company, and yet they lacked equipment,
comforts and all signs of recognition from their boss. Their project had
number-one priority. Their vice president said so. Who among them could
doubt that what they were doing was important to the company? The problem
had to lie with West. “Why are some managers effective in getting resources
and Tom isn’t? That’s my bitch,” complained one member of the team.

“Sometimes even the pencil supply seems short,” said another. “I can’t
help but think that someone wants us to run lean and mean because he thinks
we work better that way. I don’t know. Maybe Carman doesn’t have the pull.
Maybe Tom West only talks tough to people at his own level and below.
Maybe he wants us to look lean and mean to impress other people above
him.”

When they had time on their hands to look up from the machine, some
saw that they were building Eagle all by themselves, without any significant
help from their leader. It was their project, theirs alone. West was just an
office out of which came “disconnected inputs and outputs,” said one Hardy
Boy. He shrugged. It didn’t matter. “West may be acting as a real good buffer
between us and the rest of the company. Or maybe he’s not doing anything.”

Alsing listened, and sometimes he smiled. “When this is all over, there are
gonna be thirty inventors of the Eagle machine,” he predicted. “Tom’s letting
them believe that they invented it. It’s cheaper than money.”

West had put this project together, almost single-handedly. If West did
nothing else, Alsing felt, Eagle would still in some ways be West’s machine.
But the idea that he was doing nothing else was crazy, although Alsing could
understand why many on the team got that impression. Maybe they were
supposed to. West had never sat down with him and Rasala and Steve

Wallach and Rosemarie Seale and said: “We’re gonna bury this team.
They’re not gonna see anything except the machine.” But West had said, in a
cautionary tone: “There’s thirty guys out there who think it’s their machine. I
don’t want that tampered with. It’s very useful to me right now.” Another
time, he had remarked, wearing his crooked little grin: “Some of the kids
don’t have a notion that there’s a company behind all of this. It could be the
CIA funding this. It could be a psychological test.”

The managers had sealed off the team right from the start, telling every
recruit not to do so much as mention the name Eagle to anyone outside the
group. Although once in a while the pencil supply did grow short, the worst
administrative problems never touched the Microkids and Hardy Boys. “We
were buried, to the point where we were almost underground,” said one of the
Microkids long afterward, adding, with the air of one from whose eyes scales
have just fallen, that Rosemarie served them so well they never realized the
full extent of what she did for them.

By the spring, Software had begun to flood the project with programmers.
Hiring its own large team of new recruits, the software team was now
preparing the huge, complex body of system software that had to exist in
order for Eagle to become more than an interesting exercise in computer
engineering. Technical relations between Software and the Eclipse Group
were complex, like those between Hardy Boys and Microkids, but no one
except Wallach had to deal extensively with software. West had made
Wallach the lone emissary to Software, saying whenever Wallach
complained, “If you don’t have system software, you don’t have a machine.”
Wallach carried messages back and forth, and sometimes invented messages
of his own, he said, in order to slip some nice new feature past West.
Absorbing criticism from both sides, Wallach played courier, arbitrator and
referee, and enjoyed it, he said.

As the summer came on, increasing numbers of intruders were being let
into the lab—diagnostic programmers and, particularly, those programmers
from Software. Some Hardy Boys had grown fond of the prototypes of Eagle,
as you might of a pet or a plant you’ve raised from a seedling. Now Rasala
was telling them that they couldn’t work on their machines at certain hours,
because Software needed to use them. There was an explanation: the project
was at a precarious stage; if Software didn’t get to know and like the
hardware and did not speak enthusiastically about it, the project might be

ruined; the Hardy Boys were lucky that Software wanted to use the
prototypes—and they had to keep Software happy. Possibly, no explanation
would have sufficed for some Hardy Boys, they were so fond of their
prototypes. At any rate, no full one was offered. They were left to add this
insult, if they chose, to the list of West’s offenses.

From time to time, Rasala and Alsing would tell some of their troops that
West was acting as a buffer between them and the company bureaucrats, but
the two managers didn’t go into details. To do so would have violated West’s
unspoken orders—“an unspoken agreement,” said Alsing, “that we won’t
pass on the garbage and the politics.” They wished sometimes that the rest of
the team could get a glimpse of West when some other manager dared to
criticize the Eclipse Group or one of its members. West, notoriously, kept a
double standard in such matters. He criticized other groups but would brook
no criticism directed toward his own. He could carry this policy to absurd
lengths, Rasala thought. Sometimes West would simply ignore criticism
directed toward his team. Sometimes he would answer it with questions in
this vein: “Are your people working sixty hour weeks?”

Alsing and Rasala went often to West’s office, closed the door, and asked
him why they could not give the team more space and equipment. West
probably felt that a little material hardship was good for young engineers,
Alsing reasoned—that an embattled feeling provoked energy, that frills
would just get in the way. “Tom’s also cheap,” he said. That was the old-time
Data General way; one myth had it that the company used to zealously
conserve paperclips. As for West’s unfriendliness to his troops, Alsing had
heard him say more than once, “No one ever pats anyone on the back around
here. That’s how it works.” Alsing came away convinced, however, that West
had an important strategy. “We’re small potatoes now, but when Eagle is
real, he’ll have clout and can make nonnegotiable demands for salary, space,
equipment and especially future products.” Rasala came away with the same
idea: “Maybe it’s ego. But West has some interesting notions, ahhhhhhnd, I
kinda believe him. His whole notion is that he doesn’t want to fight for petty
wins when there’s a bigger game in town.”

They didn’t have to name the bigger game. Everyone who had been on the
team for a while knew what it was called. It didn’t involve stock options.
Rasala and Alsing and many of the team had long since decided that they
would never see more than token rewards of a material sort. The bigger game

was “pinball.” West had coined the term; all the old hands used it. “You win
one game, you get to play another. You win with this machine, you get to
build the next.” Pinball was what counted. It was the tacit promise that lay
behind signing up, at least for some. Holberger felt that way. “I said, ‘I will
do this, I want do it. I recognize from the beginning it’s gonna be a tough job.
I’ll have to work hard, and if we do a good job, we get to do it again.’ ”

West, said Alsing, was “saving his coins,” to fight if necessary for the
team’s right to play again.

Meanwhile, out in her open workplace, located at the junction of two
corridors, Rosemarie heard the young engineers complaining about their cold,
mysterious leader. She began to grieve for West that summer. In her mind she
said, “They don’t know him at all!” She had felt he was making a mistake in
being so aloof, but now she wondered. “Hey, they’re all very intelligent, very
creative, and every one of them is ready to take the world and give it a spin.
There has to be a strong person in Tom’s position. He’d be laughed out of the
department if he wasn’t, and no one ever laughs at Tom.”

Rosemarie kept such thoughts to herself, until long after they first began.
Then they just rolled out: “Maybe the guys thought that project was a gift
from upstairs, but there’s no doubt in my mind—it’s not even worth talking
about—it wouldn’t have happened if he hadn’t been there, and sure, there
wouldn’t have been the problems, but nobody would have had the chance,
including myself, to do what we wanted to do.

“I know people who felt afraid of him. But he had a twinkle in his eye!
You can’t be scared of someone with a twinkle in his eye who allows you to
do things. I can’t imagine someone else running that show. Someone else
might have smiled at them and said the right words, but not many bosses
would have done as much as he did for them, letting them grow in their work,
giving them a chance to really do something. Tom West gave the appearance
of not caring for them, but he did the things that a person would do if he did
care for them. Life is odd. Is it the words? Or the thing itself? I don’t think
those guys could’ve accepted a person keeping their minds down, but I don’t
think they know it yet. For a lot of them, you see, this was their first working
experience. They never had a boss who kept them down. I have.

“He kept it inside him. He didn’t go out and complain. Maybe he didn’t
pat people on the back, but he didn’t complain either. He was very tired. He
poured himself into it. I think he allowed all the complaints to be on himself.

I think it was deliberate. My opinion is he wanted them to have someone to
lay it all on, all their problems, so they could get rid of their frustrations and
all their problems quicker and go on and do that thing that was desperately
needed. I think he set himself out there as the bad guy, but bad guy is too
strong. For people to grow up they need someone to lay their problems on.
‘You’re the daddy.’ ” She laughed. “Whether he did that or not deliberately,
it had that effect.”

Dave Keating, to whom West never said so much as hello during the
project, felt with the others that West was to blame for many of their small
frustrations. But months later, when he’d had a chance to take more than a
cursory look around, he remarked: “We had a lot of problems getting
resources, but we’ve still got those problems now. Maybe it wasn’t West so
much.” Keating also wondered in retrospect whether, under the
circumstances, some bad feelings weren’t inevitable; and it seemed to him
fortunate that the team’s members had not as a rule turned on each other or
on their immediate managers. “The way West was with us, it provided a one-
level separation—someone far enough away to lay blame on.”

On a Friday afternoon in spring, about four o’clock, seeing that there was
nothing more that they could do until they got a certain new printed-circuit
board, Rasala said to his Hardy Boys, “Let’s get outta here.” A bunch of them
made off down the hallway toward the back door of the basement. There
were windows that way, and sunlight in them. They hurried toward the light,
trailing real laughter behind.

West sat in his office, the door open. As the laughter died away, he rubbed
his nose under the bridge of his glasses and, looking up, made his small
cockeyed grin. “Well, I guess I gotta find someone to design the fucking
plug.”

“A plug,” said Rasala, when asked about that crucial piece of electrical
hardware. “You gotta have one.” He rubbed his chin. “But I wouldn’t know
how to design a plug.” It was the age of specialists. West had to look
elsewhere in the basement for a maker of plugs.

Would Eagle fit into a freight elevator in Europe and the Orient as well as
in the U.S.A.? West thought he’d better make sure that it could. When Rasala
had gone to London with a model of the M/600, to set up that machine for its

European debut, he had discovered that the computer would not fit into the
elevator of the building where the announcement would take place. He’d had
to take the brand-new computer completely apart, in a parking lot in London,
one midwinter afternoon.

What sorts of cables and connectors should they use in Eagle? Should the
machine turn on with a key or a button? Good arguments for both existed.
The decision mattered a great deal to the Field Service Department. West
would deal with that.

There was Software to worry about, and Manufacturing—would
Manufacturing agree that they could build this machine in large quantities?
There was a meeting of the Product Board coming up some time in June.
There, for the first time, West would formally present Eagle to de Castro.
West started preparing for that day months in advance. He was proselytizing
for Eagle throughout the company now.

The Eclipse Group was missing deadlines, but the whole process was
moving along fairly well these days. All those gambles—on new recruits, on
software—were paying off, it seemed. But just around the time when West
had stopped thinking about his risky decision to use those fancy new chips
called PALs, he got word that the sole supplier might be about to declare
bankruptcy. Something had gone wrong, clearly. They could not get all the
PALs they wanted. Never mind getting the thousands they would need to
mass-produce Eagles; they scarcely had enough to repair errors in the
prototypes. Rasala took to keeping a list of how many PALs they had on
hand. For months, they teetered on the verge of running out. “We could lose
the whole thing right there,” said West.

Data General was working on the problem through other channels. In the
meantime, there wasn’t much that West could do about it, except worry. So
he did. The younger members of the team did not know at that time how
serious the problem was. No one told them, of course.

These nights, when West got home, he headed for his living room and
settled into the corner of an old beige couch, always the same corner. His
pants looked baggy on him now, bunched up around his waist, as if pleated.
He lay back into the cushion, staring straight up at the ceiling, and sweeping
his hair back with one hand, brought a cigarette up to his lips with the other.
From this position he drew portraits of members of the team, ones to whom
he had scarcely ever said good morning. He knew their hobbies. He knew this

one’s strengths, that one’s weaknesses. It was startling. Sometimes he
bragged about them, even Peck. “The guy’s good.”

You could never reproduce a project such as this one, even if you wanted
to. Wasn’t that obvious? West brought up his cigarette and inhaled deeply.
“Ummmmmmmh. Yeah, you can repeat it.”

West stubbed out his cigarette, lit another, and went back to looking at
whatever it was he saw in the ceiling. “The postpartum depression on this
project is gonna be phenomenal. These guys don’t realize how dependent
they are on that thing to create their identities. That’s why we gotta get the
new things in place.”

Before midsummer, while Eagle remained in the lab, still flunking many
diagnostics, and while the number of PALs on Rasala’s list kept shrinking,
West had dreamed up the vague outlines of about half a dozen new
computers and had decided, in consultation with his lieutenants, which new
machines would best suit which members of the team. “Sure,” said West.
“What do you think I do all night while I’m staring at the ceiling? I don’t just
think about boats and sailing away.”

13

GOING TO THE FAIR

EACH JUNE, in order to promote the further rise of information processing, the
computer industry puts on a fair, called the National Computer Conference,
and known, of course, as the NCC. This year it would run in New York City
for three days. The Eclipse Group was going there for one, in their very own
bus. Alsing had made all the arrangements, through Carl Carman. Good old
Alsing.

At roughly six in the morning, Hardy Boys and Microkids drove in one by
one, to the parking lot behind Building 14A/B. The sun was up, the day
already warm, and for once they did not go inside. Instead they milled around
the door of their bus. They were washed and combed and dressed for town,
and the smell of after-shaving lotion hung in the air. Rasala and Ken
Holberger, however, after shuffling around with the crowd for a moment,
slipped away. They went straight to the lab and gathered around Gollum. “It
ran EMORT for seven hours last night,” said Rasala. “Pretty good.” It looked
as though they might take up debugging stations. In a moment, though, one
of the Microkids stuck his head through the doorway and said, “Hey, the bus
is leaving.” Rasala wrote DO NOT DISTURB on two sheets of paper and placed
them on Coke’s and Gollum’s consoles. He hurried from the lab. Swift
partings often are best.

Several didn’t make the trip. Rasala tried to talk West into coming;
Holberger told West he could wear a disguise and that way have a good time
without any of the team knowing it. West refused. He sent along some of the
refreshments, through Alsing, with instructions not to say where they came
from. In an hour or so, West would be in his office, planning for the coming
meeting of the Product Board, surrounded by complete silence for a change.

Most of those wearing jackets and ties took seats in the front two-thirds of
the bus, while those in shirt sleeves occupied the back. Sudden bursts of

laughter from the back of the coach, followed by short mysterious silences.
Alsing swaying up the aisle, dispensing from a box full of soft drinks and
donuts. Holberger and Jim Guyer in a technical dispute about stereo
equipment. Steve Wallach holding forth on the subject of industrial
recruiters, predicting there’d be headhunters roaming the floors of the
conference, in search of young engineers, whom they’d take back to
“hospitality suites,” ply with liquor and caviar, and talk into defecting to
other computer companies. The bus driver calling out over his shoulder,
“Keep it down back there!” and his injunction being answered by a roar of
laughter from the rear of the bus. It took you back. Doesn’t everyone
remember awaking to the realization that there would be no school today, that
an entire summer lay ahead, that the class was going on a trip? Is there
anything more gorgeous than a holiday outing in June?

In no time at all, it seemed, the bus had achieved Manhattan. Rasala
glanced out the window at his hometown without expression. Wallach, who,
like Rasala, had grown up in Brooklyn, spoke with the air of a proprietor of
local history, about vanished Ebbets Field and the old Brooklyn Dodgers.
Bob Beauchamp, who had seen New York City only once, on a trip with his
high-school class from Missouri, gazed out his window all the way down
from Harlem to the New York Coliseum.

Computers and the hosts of equipment that attend them filled four
spacious floors. The crowd was thick and wearing badges. One badge went
by that read APPLICATIONS ANALYST. Was this someone who tried to figure
out what to do with all this stuff? “Hey, check this out over here,” said
Beauchamp. “There’s bubble memory over here,” said Jon Blau. One knot of
Microkids and Hardy Boys headed off across the first floor. Rasala, Alsing,
Holberger and Wallach went searching for DEC’s booth.

When they found it, they went right to the VAX 11/780 that was on
display. They knelt down. Wallach had just opened up the door of smoked
Plexiglas behind which stood the boards of the CPU, when a saleswoman
from DEC came over and peered at their badges. “ ‘Data General, Engineer.’
” She made a face and shooed them away. Laughing, they went over to Data
General’s turf.

It was at one of these fairs, eleven years before, that Data General had
launched itself upon the industry, raising its placard higher than any other
company’s. This had apparently become a tradition, for Data General’s sign

was once again this year the tallest in the hall, taller even than IBM’s—
raised, indeed, to such a height that it threatened to become unnoticeable.
Maybe its altitude was a function of increasing competition. If so, and the
trend continued, someday Data General would have to set up its booth
outdoors.

The company always brought something catchy to the fair. One year,
Wallach remembered, Data General was introducing a microprocessor, a
computer on a chip, so they hired a belly dancer, who plied her trade at the
company’s booth with the chip lodged in her navel. This year Dr. Gideon
Ariel, a practitioner of sports medicine, was the featured attraction. Dr. Ariel
had devised techniques for using a computer to improve the performance of
athletes and was working with members of past Olympic teams. Data General
had given him an Eclipse. An inspired act of largess, which had gotten Data
General a nice mention on NBC’s “Today” show. At the moment, a TV
screen was playing back that bit of television footage. “Yeah, sure,”
whispered Alsing. “We gave him an Eclipse with only two-K of memory and
no peripherals.” A computer thus equipped would be quite useless, that was
the joke. It probably wasn’t true, but the other engineers grinned. An old-
timer, Alsing liked to think of Data General putting something over on
national TV.

Dr. Ariel was up on the stage now, in sneakers and perspiring,
demonstrating how his Data General system could capture in detail—in
pictures of a sticklike body—a jogger’s movements. He was offering vivid,
computerized proof that the best way to jog is on the balls of your feet. The
engineers turned away.

“Oh,” said Alsing. “There’s my machine.”
He went over to the C/150, a recent model of Eclipse. It was the one for

which he had written some of the microcode last summer, on his microporch.
He played with some of the switches on the front of the machine.

Holberger and Rasala, meantime, wandered over to the M/600. This was
their last machine. Rasala took up a position beside the cabinet that contained
the CPU, leaning against it with his arm draped over the top. He wore a faint
smile. He looked as cool as a hot-rodder at the wheel, with his arm around the
obligatory girlfriend.

Alsing approached. “Say. I’m a customer, and there’s something I don’t
understand about this computer. What’s this switch for?”

“It works,” replied Holberger. “But it’s not useful for anything.”

The community of Eagle became, for the day, unglued. I looked around
and none of them were in sight except for Wallach, but he was the right
companion in this spot.

A grinning fellow approached, offering his hand to Wallach. For a
moment I entertained the hope that this was a headhunter about to bestow
hospitality upon us. But he was just the chief engineer of another
minicomputer company. He and Wallach chatted for a while, and as the man
was walking away, Wallach told me, too loudly for comfort: “They’ve got a
thirty-two-bit computer. A 1963 design.”

You could have sensed that Wallach knew computers just from the way
he carried himself. Approaching a display, he looked as though he were
sniffing the air. A snort signified a kludge; a shrug, good but ordinary work; a
judicious nod, rarely bestowed, that here at last was evidence that some
people knew what they were doing. IBM required a lingering inspection. You
realized first of all that IBM’s large and many-sided booth was not made of
ersatz materials but real oak. “You’ll notice,” Wallach added, “they have just
the right number of black people.” Women, too.

IBM seemed to be making no attempt at flashiness. They had no catchy
display, just men and women in white shirts describing the machines on
exhibit. These computers were mainly members of IBM’s new 4300 line,
which the company had announced not many months before. In fact, at the
moment, IBM didn’t have to talk people into buying this new kind of
machine. IBM’s problem just then was how to produce enough of these
computers to meet the orders rolling in. At the moment, an estimated three
years’ worth of back orders had piled up, a piece of good luck for the many
companies that, like pilot fish, follow IBM around—the so-called plug-
compatible manufacturers, which produce processors and various other
equipment that can be hooked up without modification to computing systems
built mainly around IBM computers. In some sense, all companies in the
computer industry are orchids on IBM’s tree. Everyone has to consider
IBM’s pricing and strive for compatibility with IBM equipment.

It seemed curious: a company suffering from too much demand. Not that
in the long run IBM was going to suffer more than discomfort from this

backlog, but the collapse of many small, promising computer companies had
begun with a similar problem. They’d announce a new product and then for
one reason or another they wouldn’t be able to produce it in sufficient
quantities to meet their obligations. They’d asphyxiate on their own success.
But a small company had to court disaster. It had to grow like a weed just to
survive.

From IBM Wallach led me to some of its traditional competitors. First, to
Sperry Univac, the descendent of the first real computer company, which
might have become the IBM of the industry had it not blown its early lead;
Sperry had a big new machine and a slide show all about it. Burroughs had
erected a small theater, with chairs set up to face a rank of computers in big
white cases that looked like nothing so much as dishwashers and
refrigerators; a recording of trumpets playing fanfares ushered you into this
homely spectacle. The main thing memorable at National Cash Register was
the pair of golden-haired women, identical twins, posing at its booth. “The
bipolar blondes,” said Jon Blau, when we ran into him later. It was a fairly
witty remark, drawn from the language of semiconductor technology, but one
of those that loses flavor during the time it takes to explain it.

Wallach took a look at all the 32-bit superminis at the fair, the machines
with which Eagle, if it ever got out the door, would presumably compete.
These machines were hot items now. Some estimates had it that total sales
and back orders for DEC’s VAX were approaching a thousand, which would
translate into something like half a billion dollars in revenue, just for that one
new machine.

A certain broad division between companies was apparent. The
established and successful, with many wares to show, had sectioned off
pieces of the central floors, setting up theaters and playhouses. The smaller,
newer, less diversified had small booths along the walls. They were the little
jewelry and camera stores west of Broadway. Wallach gave them a window-
shopper’s tour. Many of these little outfits were selling “pin-compatible
memories,” ones that could be added to DEC’s and Data General’s machines
more cheaply than the extra boards offered by the big manufacturers. “We’re
suing some of these guys,” said Wallach.

We glanced at many systems for producing graphics, one of the latest
segments of the industry to experience a boom. You can draw pictures with
these machines. Some of the most popular programs for graphics systems

created charts of the type dear to executives with ambitious plans they want
to sell to their bosses—the kind of charts that carve some commodity such as
revenues into various parts, as you might divide a pie. Computers were
cranking out many sorts of pie charts: multicolored pie charts, pie charts that
rotated, pie charts in three dimensions. We wandered past array processors
performing tricks in FORTRAN, past tape drives, Winchester disks, printers
and consoles in sleek-looking packages, and the latest “modems” for hooking
up computers to telephones.

“I notice more Japanese here than in other years,” said Wallach. This was
a big issue. Already the Japanese had made substantial inroads into the
American market for integrated circuits; and you knew that segment of the
industry was worried, because they were clamoring for protective tariffs.
Data General, on the other hand, had bought half of a Japanese minicomputer
company—no flies on Data General.

We wandered on, casting passing glances at trade magazines, which were
selling advertising and subscriptions; past software houses, which specialize
in creating those crucial, ever more expensive user programs that had set the
stage for Eagle; past systems houses and OEMs peddling turnkey systems—
buy from us and you won’t have to worry; just turn the key and your
computer system works. A great deal of the overall industry, it seemed,
consisted of computer companies taking in each other’s wash.

Here and there we saw products of the future, such as bubble memory.
After a while, however, most of what was on display began to look the same.
From every booth came the insistent clamor, that here, at last, was the piece
of computing gear that was the fastest, the most reliable, the easiest to use,
the “most intelligent,” simply the greatest in the universe. The spectacle
began to overwhelm me—not so much the variety and versatility of machines
themselves, but the volume of gear, the size of the crowd, the sheer number
of firms.

Wallach said that two of the best-named companies were not on hand: Itty
Bitty Machines (another “IBM”) and Parasitic Engineering. But I saw many
other names, passing by. Among others, I saw Centronics, Nortronics, Key
Tronic, Tektronix and also General Robotics. There were Northern Telecom
and Infoton and Centurion, which had a fellow dressed as a Roman soldier
standing by its booth. There were Colorgraphics and Summagraphics;
Altergo and C. Itoh; and Ball.

“Hey, wait a minute. What’s Ball doing here? Aren’t they the mason jar
people?”

“Yeah, but they also make disk drives.”
Also: the Society for Computer Simulation, and Randomex, and Edge

Technology, and Van San, which sold “Quietizers.” There were Datum, Data
Pro and Data I/O, Tri Data, Epic Data, Facit Data, Control Data, Decision
Data, Data General and Data Specialties. And we didn’t have time even to
glance at the wares of Itek, Pertec, Mostek, Wavetek, Intertek, Ramtek… Ah,
Ramtek.

“In ’seventy-three,” said Wallach, “there were two floors, and now there
are four floors and it’s just as crowded.”

Norbert Weiner coined the term cybernetics in order to describe the study
of “control and communication in the animal and the machine.” In 1947 he
wrote that because of the development of the “ultra-rapid computing
machine,… the average human being of mediocre attainments or less” might
end up having “nothing to sell that is worth anyone’s money to buy.”
Although Weiner clearly intended this as a plea for humane control over the
development and application of computers, many people who have written
about these machines’ effects on society have quoted Weiner’s statement as
though it were a claim of fact; and some, particularly the computer’s
boosters, have held the remark up to ridicule—“See, it hasn’t happened.”

Since Weiner, practically every kind of commentator on modern society,
from cartoonists to academic sociologists, has taken a crack at the sociology
of computers. A general feeling has held throughout: that these machines
constitute something special, set apart from all the others that have come
before. Maybe it has been a kind of chronocentrism, a conviction that the new
machines of your own age must rank as the most stupendous or the scariest
ever; but whatever the source, computers have acquired great mystique.
Almost every commentator has assured the public that the computer is
bringing on a revolution. By the 1970s it should have been clear that
revolution was the wrong word. And it should not have been surprising to
anyone that in many cases the technology had served as a prop to the status
quo. The enchantment seemed enduring, nevertheless. So did many of the old
arguments.

“Artificial intelligence” had always made for the liveliest of debates.
Maybe the name itself was preposterous and its pursuit, in any case,
something that people shouldn’t undertake. Maybe in promoting the
metaphorical relationship between people and machines, cybernetics tended
to cheapen and corrupt human perceptions of human intelligence. Or perhaps
this science promised to advance the intelligence of people as well as of
machines and to imbue the species with a new, exciting power.

“Silicon-based life would have a lot of advantages over carbon-based
life,” a young engineer told me once. He said he believed in a time when the
machines would “take over.” He snapped his fingers and said, “Just like
that.” He seemed immensely pleased with that thought. To me, though, the
prospects for truly intelligent computers looked comfortably dim.

To some the crucial issue was privacy. In theory, computers should be
able to manage, more efficiently than people, huge amounts of a society’s
information. In the sixties there was proposed a “National Data Bank,” which
would, theoretically, improve the government’s efficiency by allowing
agencies to share information. The fact that such a system could be abused
did not mean it would be, proponents said; it could be constructed in such a
way as to guarantee benign use. Nonsense, said opponents, who managed to
block the proposal; no matter what the intent or the safeguards, the existence
of such a system would inevitably lead toward the creation of a police state.

Claims and counterclaims about the likely effects of computers on work in
America had also abounded since Weiner. Would the machines put enormous
numbers of people out of work? Or would they actually increase levels of
employment? By the late seventies, it appeared, they had done neither. Well,
then, maybe computers would eventually take over hateful and dangerous
jobs and in general free people from drudgery, as boosters like to say. Some
anecdotal evidence suggested, though, that they might be used extensively to
increase the reach of top managers crazed for efficiency and thus would serve
as tools to destroy the last vestiges of pleasant, interesting work.

Dozens of other points of argument existed. Were computers making
nuclear war more or less likely? Had the society’s vulnerability to accident
and sabotage increased or decreased, now that computers had been woven
inextricably into the management of virtually every enterprise in America?

Wallach and I retreated from the fair, to a café some distance from the
Coliseum. Sitting there, observing the more familiar chaos of a New York

City street, I was struck by how unnoticeable the computer revolution was.
You leave a bazaar like the NCC expecting to find that your perceptions of
the world outside will have been altered, but there was nothing
commensurate in sight—no cyborgs, half machine, half protoplasm, tripping
down the street; no armies of unemployed, carrying placards denouncing the
computer; no TV cameras watching us—as a rule, you still had to seek out
that experience by going to such places as Data General’s parking lot.
Computers were everywhere, of course—in the café’s beeping cash registers
and the microwave oven and the jukebox, in the traffic lights, under the
hoods of the honking cars snarled out there on the street (despite those traffic
lights), in the airplanes overhead—but the visible differences somehow
seemed insignificant.

Computers had become less noticeable as they had become smaller, more
reliable, more efficient, and more numerous. Surely this happened by design.
Obviously, to sell the devices far and wide, manufacturers had to strive to
make them easy to use and, wherever possible, invisible. Were computers a
profound, unseen hand?

In The Coming of Post-Industrial Society, Daniel Bell asserted that new
machines introduced in the nineteenth century, such as the railroad train,
made larger changes in “the lives of individuals” than computers have. Tom
West liked to say: “Let’s talk about bulldozers. Bulldozers have had a hell of
a lot bigger effect on people’s lives.” The latter half of the twentieth century,
some say, has witnessed an increase in social scale—in the size of
organizations, for instance. Computers probably did not create the growth of
conglomerates and multinational corporations, but they certainly have abetted
it. They make fine tools for the centralization of power, if that’s what those
who buy them want to do with them. They are handy greed-extenders.
Computers performing tasks as prosaic as the calculating of payrolls greatly
extend the reach of managers in high positions; managers on top can be in
command of such aspects of their businesses to a degree they simply could
not be before computers.

Obviously, computers have made differences. They have fostered the
development of spaceships—as well as a great increase in junk mail. The
computer boom has brought the marvelous but expensive diagnostic device
known as the CAT scanner, as well as a host of other medical equipment; it
has given rise to machines that play good but rather boring chess, and also,

on a larger game board, to a proliferation of remote-controlled weapons in the
arsenals of nations. Computers have changed ideas about waging war and
about pursuing science, too. It is hard to see how contemporary geophysics or
meteorology or plasma physics can advance very far without them now.
Computers have changed the nature of research in mathematics, though not
every mathematician would say it is for the better. And computers have
become a part of the ordinary conduct of businesses of all sorts. They really
help, in some cases.

Not always, though. One student of the field has estimated that about forty
percent of commercial applications of computers have proved uneconomical,
in the sense that the job the computer was bought to perform winds up
costing more to do after the computer’s arrival than it did before. Most
computer companies have boasted that they aren’t just selling machines,
they’re selling productivity. (“We’re not in competition with each other,” said
a PR man. “We’re in competition with labor.”) But that clearly isn’t always
true. Sometimes they’re selling paper-producers that require new legions of
workers to push that paper around.

Coming from the fair, it seemed to me that computers have been used in
ways that are salutary, in ways that are dangerous, banal and cruel, and in
ways that seem harmless if a little silly. But what fun making them can be!

A reporter who had covered the computer industry for years tried to sum
up for me the bad feelings he had acquired on his beat. “Everything is
quantified,” he said. “Whether it’s the technology or the way people use it, it
has an insidious ability to reduce things to less than human dimensions.”
Which is it, though: the technology or the way people use it? Who controls
this technology? Can it be controlled?

Jacques Ellul, throwing up his hands, wrote that technology operates by
its own terrible laws, alterable by no human action except complete
abandonment of technique. More sensible, I think, Norbert Weiner
prophesied that the computer would offer “unbounded possibilities for good
and for evil,” and he advanced, faintly, the hope that the contributors to this
new science would nudge it in a humane direction. But he also invoked the
fear that its development would fall “into the hands of the most irresponsible
and venal of our engineers.” One of the best surveys of the studies of the
effects of computers ends with an appeal to the “computer professionals” that
they exercise virtue and restraint.

When the team came trooping back onto the bus—laughing, teasing, their
faces glowing in the evening—it became obvious that many of them had not
stayed long at the fair. They had gone off instead to see Greenwich Village
and Times Square, and they looked refreshed. The conference didn’t really fit
their interests. “I don’t care how computers get sold. I just build ’em,” said
one of the kids. Alsing remarked, “I don’t even know how much an Eclipse
M/600 costs.”

Some in the community of Eagle cheerfully professed ignorance about,
and little interest in, the ultimate uses to which the machines they built were
put. But they did not hold consistently to that attitude. Some had seen in use
machines that they had made, and they confessed that was a thrill. Some
didn’t hold to the attitude at all. “No, I think about it a lot,” Chuck Holland
told me. “Initially, when I was starting out, I could have worked for a
company that makes machines directly for the military, and for more money.
But I’m not gonna design anything that directly bombs someone.”

Young computer engineers who professed anxieties about the fruits of
their labors—those to whom I talked, anyway—usually named as the source
of their worry the military applications of computers. One young man told me
that if his company should ever start building devices of destruction, he
would try to talk the executives into stopping, and if worse came to worst, he
would make sure that those devices never worked. No doubt he meant it, but
I think he overestimated his power. He worked for another outfit; no member
of the Eclipse Group ever talked of sabotage. It would, in any case, have been
an idle threat.

When the Eagle was done, according to the plan, Data General would ship
the blueprints to an OEM, which would build a “ruggedized” version of the
machine. Thus equipped for battle, Eagle would be sold to other OEMs, and
they in turn would put it together in packages of military design for sale to
the Department of Defense. Not everyone in the group believed that such
applications would constitute an unworthy end, while others preferred not to
think about that side of the process. What, in any case, could a dissident have
done in the situation? Make sure that the plans for Eagle got fouled up and
that the machine never came to life? Eagle, as it was planned, would live up
to its designation as a general-purpose computer, competent at scientific and
commercial chores, as well as military ones. If it did any, it could do all. A
dissenter could indeed refuse to do work that might end up in the hands of

soldiers: that would mean, in effect, not being a computer engineer.
Shortly after he arrived at the company, at a party for newcomers known

familiarly as “cocktails with the Captain,” Jon Blau had asked de Castro if
Data General did business with the Republic of South Africa. De Castro
replied, Blau remembered, that the company did not at that time, but that
Data General wasn’t necessarily guided by politics—which was perhaps an
understatement. Blau worried more openly than anyone else in the group
about how people used computers, but he felt confused about the subject. “A
friend asked me what is my social role. Obviously, what I’m doing is in
demand, but it’s hard for me to pinpoint why…. But for every bad use of a
computer, I can think of a good one.”

The computer’s reputation for awesome obscurity and the real
complexities of the engineers’ trade made barriers that were hard to cross.
Their wives, some of the team said—and some of the wives agreed—didn’t
know much about what they did all day. “No one understands what we do,”
said Alsing. These youngsters led, in this respect, monastic lives. What were
computers doing, going to do to society? They weren’t often asked.

A number of the engineers read prodigious amounts of science fiction.
Dave Keating, for instance, read three or four novels of this sort a week. “For
one,” he explained, “science fiction has a lot of optimism in it. I mean, we
made it that far at least. Part of it, too, we can identify with the technology;
and I like the imagination in those books.” Several of them, at idle moments,
liked to conjure up stories of their own. Chuck Holland told me: “I do a lot of
thinkin’ about what my mind must do. The way I think it’s gonna be is that
the computer will grow up with the child. When you’re born, you’ll be given
a computer. There’ll be this little thing”—he grabbed his shoulder to show
where it would sit—“that goes around with you. You’ll teach it how to talk
after you learn how.” He imagined a teenaged boy teaching his computer how
to drive, telling it, “Okay, now you give it a try,” and correcting it when it
made a mistake. “It’s gonna be an extension of me,” Holland said. But
maybe, he went on, a time would come when the home would be “practically
a simulator,” and the computer would run every aspect of a person’s life.
“Then we get tired of it. We start growing plants or something. Maybe slowly
we will turn around and go away from it. If computers take something away
from us, we’ll take it back. Probably a lot of people will get screwed before
that happens.”

Alsing said: “I have a great idea for a science fiction story. What happens
when infinite computer memory becomes infinitely cheap?” But that was on
the ride back, and no one at that moment seemed interested in such
speculations. They were having fun. The Microteam gave Holberger an
Honorary Microcoder’s Award—with some reservations, on account of a
change he had made in UINST after they had already taken their unanimous
vote (all such awards required unanimous approval, Alsing pointed out).
Holberger accepted with a graceful speech from the back of the bus.

Someone asked: “Hey, where’s the Michelob? There was a whole case of
it somewhere.”

“We drank it all,” someone else confidently and proudly asserted.
A little later on, a case of Michelob was handed back from seat to seat,

while Alsing stood in the aisle holding forth hilariously on the perils that
New York City’s massage parlors held for young men from the country.

They were free for a little while on a summer’s night—comfortable, of
course, in the assurance that interesting work awaited them tomorrow, but for
the moment unbound from their machine.

14

THE LAST CRUNCH

IN AUGUST, Carl Carman asked Ed Rasala when he thought they would finish
the debugging.

Rasala looked squarely at his division’s vice president and said, “I don’t
know.”

West was greatly amused.

As the last two items on his many debugging schedules, Rasala listed the
Eclipse and the Eagle Multiprogramming Reliability Tests, the hardest of all
the diagnostic programs. When Eagle could play those for a full night without
failing, then it would be ready to become a computer. The debuggers would,
Rasala planned, run Adventure, and then they would send one of the
prototypes down the hallway to the Software Department. They would “ship
it to Software,” and the thirty or so software engineers now working on the
project would continue to endow it with the complex set of programs known
as an operating system.

Each time they had approached the deadline for this consummation, West
had named a new deadline, which he would announce to superiors and
various interested departments. Accordingly, Rasala would draw up a new
debugging schedule. West said April, and Rasala worked up a plan that might
get them there by then. It didn’t, so West proclaimed May to be the date, and
Rasala followed suit. Then it was June, and finally West settled on the end of
September. By then, Rasala couldn’t stand it anymore. He wasn’t making any
more promises. On the other hand, he felt that they had better do it by the end
of September. “Our credibility, I think, is running out.”

As a group, they often got ahead of themselves. They began to celebrate
that summer. As their first favorite pretext for a party, they used the

presentation of the Honorary Microcoder Awards that Alsing and the
Microteam had instituted. Not to be outdone, the Hardy Boys cooked up the
PAL Awards, the first of which they gave to the Eclipse Group’s own
“CPU,” after work, at a local establishment called the Cain Ridge Saloon.
The citation read as follows.

HONORARY PAL AWARD
Rosemarie Seale

In recognition of unsolicited contributions to the advancement of
Eclipse hardware above and beyond the normal call of duty, we hereby
convey unto you our thanks and congratulations on achieving this
“high” honor.

It came in a frame, and with a plastic cover. Glued to the center of the citation
was a socket, such as is used to hold a PAL chip on a printed-circuit board.
This being a PAL Award, the socket was empty.

At a party at his home, Chuck Holland handed out his own special awards
to each member of the Microteam, the Under Extraordinary Pressure Awards.
They looked like diplomas. There was one for Neal Firth, “who gave us a
computer before the hardware guys did,” and one to Betty Shanahan, “for
putting up with a bunch of creepy guys.”

Having dispensed Honorary Microcoder Awards to almost every possible
candidate, the Microteam instituted the All-Nighter Award. The first of these
to Jim Guyer, the citation ingeniously inserted under the clear plastic coating
of an insulated coffee cup.

Somewhat later, at a time more appropriate—at the Appreciation Dinner
that Carman, with coaxing from Alsing, threw for the team—the wives got
their due, the Eagle Awards. Alsing wrote all the citations. Penny Rasala’s
read:

EAGLE
(Eclipse Appreciation and Gratitude for Lonely Evenings Award)

This is to certify that Penny endured many lonely hours in the absence
of Edward Rasala while Gallifrey Eagle was being developed, and on
many occasions wondered what was the advantage of Ed being boss if
he had to work 2 shifts.

It was signed, in type, by one “Gallifrey Eagle,” and witnessed by Alsing.
Thus—as Alsing, himself the main instigator and organizer of parties, put

it—“We congratulated ourselves on finishing Eagle and then we went back
and finished it.”

It was an evening in August. They still had a long way to go. But, as if in
concert with the season, the Hardy Boys were stuck in the deepest lull of their
campaign. They had gone back to working single shifts. Even the pace of
Rasala’s conversation had slackened. Walking toward the lab, he spoke in
short sentences and paused in between them. “The momentum has slowed
down dramatically…. Back in the early days, when nothing worked, it was
easy to find things to do…. Now almost everything works…. The problems
are harder to find…. They take days…. The people are more tired, I think….
The problems may be less interesting…. Some are more complicated…. This
is the grind part, I think.”

Only a few were working in the lab that evening. None was too busy to
talk. Seated in front of Gollum, Jim Veres discussed the picture on the blue
screen of his analyzer. Hundreds of white dots blinked on and off while many
white lines danced among them. The screen looked like the ceiling of a
planetarium, the stars moving, white lines between them sketching out the
constellations. It was lovely. Veres called this picture a map. “After staring at
the map a long time,” he said, “you get used to what it should look like.” By
now he and the other debuggers could tell which of the dozens of diagnostic
programs was running just by looking at the map. Did I notice how the
patterns kept changing in rhythm? he asked. If on some part of the screen
images froze, that meant trouble inside. “This picture looks healthy.”

Rasala stopped in at Jon Blau’s station, in front of Coke. Blau is dark-
haired with the smooth, clear skin of a child; but large black circles under his
eyes stood out in sharp contrast to his white skin. He looked like a raccoon.

Rasala sat down and visited with Blau for a while.
Blau had become a Hardy Boy after Josh Rosen quit. Blau had been the

logical choice to take over the debugging of the ALU, because he had written
much of the microcode for the arithmetical instructions. It had been hard for
him, though. “I was terribly excited by it, then very frightened,” he said. “I
knew what was going on with the microcode, but with the hardware,
everyone is ten miles ahead of me, so I’ve got to run as hard as I can to catch
up. Plus, I’ve got to keep pace. I’m keeping a note pad because people ask
me questions and I think ‘I should know the answer to that.’ ”

Rasala was sitting cowboy-style, his chair reversed, his arms resting on its
back. He was facing Blau and as Blau talked, Rasala seemed to study his
face.

Blau had presented to Rasala a problem of management at least as severe
as Rosen had. No sooner did Blau start work on the ALU than he became so
frightened that he had to take a week off. Blau also liked to work, said
Rasala, “from one P.M. to whenever.” He kept what Rasala called “good
Alsing hours,” and this habit created scheduling problems. They had four
prototypes now, but many people needed to use them. Scheduling “machine
time” was tricky, and an engineer keeping quirky hours could disrupt
everything. Moreover, the bugs now tended to be synergistic; someone
working on a problem in the IP might need to have the ALU’s expert around.

And Blau was at least as different from Rasala as Rosen; Blau was known
as the introspective one, the philosopher of the group. He didn’t fit Rasala’s
definition of a Hardy Boy exactly. “He’s not as tough as the rest of us are,”
said Rasala. “He’s a sensitive guy. He’s a good guy. So if someone comes
into his office, he’ll tend to let them talk for hours, no matter how dumb their
questions are.” Nevertheless, Rasala did not speak brusquely to Blau or tease
him roughly. They had what Rasala called “heart-to-hearts”:

“Well, here’s my problem with you, Jon.”
“Well, Ed, here’s my problem with you.”
If you saw them talking together, you might have thought that some of

Blau had rubbed off on Rasala. Or vice versa. Or both.
When Rosen left, Rasala went around for weeks saying, “I failed,” and “If

only I’d had more time… a guy as smart as Josh.” No manager wants to lose
people; it doesn’t look good. But Rasala’s reaction had seemed to border on
grief. He had read self-help manuals and shaved off his beard, and he looked

less imposing without it. Nowadays, it seemed, he spoke wistfully on such
topics as his bouts with diagnostics and his fear that there would be no stock
options for “the kids.”

One day around this time Holberger came storming into Rasala’s office,
complaining about Jim Guyer. Guyer, it seemed, refused to stop working on a
certain problem of low priority. Holberger and Guyer were like brothers,
always arguing. “I’m gonna get Guyer off the machine,” said Holberger.

Rasala just listened calmly and nodded and nodded. Finally, Holberger
said: “Ahhh, let Guyer do what he wants. It doesn’t really matter.”

Rasala smiled and kept on nodding. It was catching perhaps.
Now, in the lab that evening in August, Rasala asked Blau what he was

working on. They talked about the particular problem for a while. Rasala
turned to me and said, “It’s the kind of problem where you push in the clutch
and the horn works.”

“Are you trying to clean up the last crock?” I asked Blau.
“The next one,” he said. “I used to think I was getting close.”
Rasala was resting his chin on the back of his chair now. “It’s hard to tell

when you’re finished,” he said, without moving.
One of the engineers working on the new prototype named Gallifrey

called out to another, who was on his way out of the lab, “Don’t burn that
PAL yet. I have to ECO it.” And then it was quiet again, except for the hum
of the fans in the machines.

“Well,” I said to Blau. “I’ll stop asking questions and let you go home.
You look tired.”

“It’s a long-term tiredness,” said Rasala.
“Going home won’t solve it,” said Blau.
For weeks afterward, Rasala repeated that thought again and again. “It’s a

tiredness going home won’t solve.” It fit his mood perfectly. The crew’s
wives—“and/or girlfriends,” said Rasala for a joke—were growing weary
themselves of the long hours. He felt under pressure from his crew to stick to
one shift a day and to more or less normal working hours. Meantime, the
pressure to finish by the end of September was building.

Once, Alsing had tried to guess the plot ahead of time. Months ago, he
had said: “Near the end, Tom’s going to declare an imminent disaster and go

into the lab himself. Sometime near the end we’ll do that.”

A computer of Eagle’s class must perform at high speed two special kinds
of arithmetic called single-precision floating point and double-precision
floating point. Scientific users, especially, care about this matter. Maybe
more important, this is one of the few areas in which the quality of a
computer can be measured and given a number, through a standard test called
the Whetstone Benchmark. It is not the only or necessarily the most
important standard by which to judge a computer—if you want to do
trigonometry on your computer it’s very important—but it is a popular test,
partly thanks to Data General. For its time, the Eclipse had fine Whetstones,
and Data General did not fail to brag effectively about them. West had hoped
at the start that Eagle’s Whetstones would be better than VAX’s. When it
became clear that the team could not match VAX’s Whetstones at double
precision and still keep the ALU on one board, West decided to sacrifice
some performance at double precision. If they could surpass VAX at single-
precision arithmetic, they could still say Eagle was faster than VAX.

In August they ran a preliminary Whetstone on an unfinished prototype.
The results were not encouraging. The numbers fell below their expectations.
It appeared that in single-precision arithmetic, Eagle would be no faster than
VAX.

“It’s just bullshit,” said Jon Blau in a loud voice one evening around this
time while sitting by Coke. “What’s better, Crest or Colgate?”

But Rasala did not respond. “It’s discouraging,” he said.
“What’s the problem?” I asked.
“It’s somewhere back in there,” he said. Without turning, he jerked his

thumb over his shoulder, pointing, pointing, pointing at the prototypes that
stood humming against the wall.

Allegedly, some computer companies maintain squads of debuggers
called “finishers.” They march into the lab and take over the job when a
machine has been brought to the last stage of its incubation and the inevitable
slowdown occurs. If West had owned such a team and had used them now, he
would certainly have provoked a mutiny. The troops might have hung an

effigy of him from the flagpole out front.
But it was time for a change, Rasala believed. He decided to work a

regular shift in the lab himself. He chose Guyer to be his lab partner. It was
never clear just how well Rasala did at this eleventh-hour debugging,
unacquainted as he was with the intricacies of the hardware. The others had
come to know it as well as you do the rooms of your childhood home; they
could find all the light switches in the dark. Rasala could not, though he was
spending many hours studying up on his own. Questioned about this, Guyer
shrugged his shoulders and gave his high laugh. “Oh, Ed’s comin’ along.”

Late in August, after work one day, the whole gang came trooping into the
Cain Ridge Saloon, teasing Rasala by turns. It appeared that he had suspected
a certain chip of overheating occasionally, and in order to find out if this was
indeed the cause of the bug they were working on, he had subjected the chip
to the heat gun, a glorified hair-dryer. But he had done so with too much
enthusiasm. Rasala had melted the chip’s socket.

The socket cost just a few pennies, but the way they carried on, you might
have thought it was made of gold. The way they all laughed and cried out,
Rasala cowering in mock trepidation at their abuse—“Meltdown!” “We need
more fire extinguishers in the lab, Ed!”—it was clear that under his influence,
they had returned.

When he first arrived at Westborough, Jon Blau heard from Rosemarie
Seale that in five weeks the Eclipse Group’s offices would be remodeled. It
was ultimately on account of this that Blau, for one, never believed in the
promise of stock options. It was like the debugging schedules. When five
weeks elapsed, the promise was that the workmen had been delayed but
would arrive five weeks hence—for sure this time. It became a standing joke.
Of anything that clearly wasn’t going to get done on time, they would say,
“No sweat, we’ll do it in five weeks.”

Now they were back on double shifts. They had gone back underground.
The Hardy Boys were attacking those bugs. The Microkids were cranking out
the last parts of their code. Suddenly, the carpenters arrived. All the walls to
all their offices and cubicles came down. Then the carpenters went away for a
week. Rosemarie did what she could. They managed somehow. At least
nothing important got lost.

“The place is all torn up,” said West, “and when it’s back together, I
suspect that they’ll find it’s been emotionally torn up, too.”

As it turned out, the group did not get much new space. Alsing and Rasala
got walls and a real door apiece, and most of the rest got cubicles again—but
ones of slightly different size, so that an engineer with some seniority, such
as Holberger, got several square feet more than the recruits. Thus, for the first
time, the group’s pecking order was made completely visible. It was carved
out in steel partitions.

The atmosphere was different. It was hard to put your finger on the
change, but the veneer of equality was gone, and with it perhaps some of
what had made the Eclipse Group seem unusual. Perhaps it was only my
imagination, but afterward there seemed to be more talk among the younger
members of the team about being “peons,” more sentences in which the
phrase “someone at my level” cropped up.

By early September Holberger felt he was back in “burn-out city.”
Around this time he found, in a wastebasket in the lab, the stub of a
paycheck. It belonged to one of the technicians who had come down from
Portsmouth. These were first-rate technicians, and being technicians, they got
paid for overtime. Engineers were professionals; they did not.

Holberger glanced at the stub. He couldn’t help it. He was astonished. The
technicians were taking home more than twice as much as he was, on account
of all the overtime.

Holberger took the stub to Rasala. Together, they burned it, so that the
troops wouldn’t see it, and then they went back to work. Holberger laughed.
He said once again, “I don’t work for money.”

By Saturday, the fifteenth of September, Rasala felt that they were close.
He inaugurated what he called “the last big push.”

“We’re gonna work round the clock, Saturday, Sunday,” he said. “We’re
gonna do it all, and bathe in glory, guys.” Late on Saturday afternoon,
however, while running one of the last, advanced Eagle diagnostics, Gollum
came down with a bad-looking bug.

The failure occurred when the diagnostic program called for an
“interrupt,” an order that the computer pause, store all unfinished work, and
start in on another job. A computer must deal with interrupts smoothly and

regularly if it is going to handle many terminals at once.
Guyer, Holberger and Rasala took on the bug. They studied the printed

listing of the steps in the diagnostic program, and they saw that in addition to
everything else—as if interrupts weren’t tricky enough—the program was
trying to test Eagle’s ability to move from one block of memory to another.
Then they saw that this program also contained “a page boundary crossing,”
another fairly arduous maneuver through memory.

Rasala felt stymied. There were too many possibilities, boundary
crossings on top of block crossings on top of interrupts. “It’s some complex
interaction of the IP, the ATU, Microsequencer and the IOC. And probably
the ALU, for that matter,” thought Rasala. In effect, he was thinking, “It’s the
whole damn machine.” So they hooked up an analyzer and they followed a
signal, out of the System Cache, to Main Memory, territory into which the
analyzers cannot look. And when the signal came back from Main Memory,
it had changed, from a 1 to a 0—from a high to a low voltage. Essentially, it
had disappeared.

Four hours passed. Guyer left, worn out at last. Holberger and Rasala
lingered awhile. They suspected it was one of those time bombs, hidden far
back in the diagnostic program, but they couldn’t find it and they went home.
The last big push ground to a halt.

Next morning, Sunday, all three gathered in front of Gollum again.
Perhaps it was a timing problem. Gollum was running with the normal, 220-
nanosecond clock. Coke, next door, was still using a slow clock. They took
the diagnostic program to Coke and on Coke it ran without a hitch. So it was
a timing problem. Had to be. Holberger and Rasala began trading theories.

In the lab, three-way conversations often led to confusion. Guyer bowed
out of this one. He pushed his chair to the table in the center of the room and
rocked back. He was just thinking, gazing absently at Coke, at the boards
lined up in a row inside the frame. It was like looking at a shelfful of books,
and he noticed before he even realized it that Coke had one more board on its
shelf than Gollum did. It had an extra memory module.

“Oh shit,” said Guyer.
“What,” said Rasala, without turning away from Gollum.
Guyer went leafing through the listing of the diagnostic program. “I don’t

wanna tell you yet,” he called over. “But I think I’ve got it.”
“You tell me now!” said Rasala.

So Guyer brought over the listing and reminded them that Coke had two
boards of Main Memory, whereas Gollum only had one, and the conversation
turned cryptic.

“Yup. More than two-fifty-six K,” said Holberger, looking at the listing of
the diagnostic.

In essence, Holberger was saying that the diagnostic programmer, in
trying to test Eagle’s ability to cross from one block of memory to another,
had inadvertently directed the machine to cross from the block located at the
very end of one board of Main Memory to the block at the beginning of the
next board. But in Gollum there was no next board. So when the program
told Gollum to go to the block on the board that it didn’t contain, the
prototype “fell off the end of the world.”

The ratiocination proceeded. They had failed to recognize these facts
because they were used to thinking in the numbering system that Eclipses
employed. Eagle used a different system. “And we didn’t change our way of
thinking,” said Rasala. They stuck a second board of Main Memory into
Gollum and the interrupt worked. But they had lost the best part of a day.

“It’s kinda embarrassing,” said Guyer.

Sitting in his office, chewing up a toothpick, West scowled. Rasala should
have known better.

Would West have known better?
“Maybe.”

By the evening of September 20 the machines had accomplished the
Eclipse Multiprogramming Reliability Test, but not quite the one designed
for Eagles. Probably, Rasala thought, they would reach that milestone
tomorrow. At any rate, he decided to try out Adventure the following
evening.

After the M/600, his last machine, had been sent to dozens of customers, a
defect had cropped up in it—an important one, which, among other things,
prevented the machine from playing Adventure. If he’d tried to play the game
in the lab, they’d have found the problem and fixed it cheaply. Although he
had never ventured into Colossal Cave himself, Rasala resolved that he

would never declare a machine debugged again until it had mastered
Adventure. Now the time for Eagle to do it had come. So he thought.

When Rasala walked into the lab on the evening of the twenty-first,
Holberger called out to him, “It looks like we’ve achieved hard interrupts.”
There were diagnostic programmers in the room, and some writers of system
software, as well as Microkids and most of the Hardy Boys, and they were all
doing something. The little room was a forest of equipment now. A couple of
months had passed since Eagle had been cloned. Rasala had named the two
new prototypes Tartis and Gallifrey, after the home planet and time machine
of Dr. Who, the protagonist of a science fiction show on public TV. The two
new machines were the first to run with the normal, full-speed 220-
nanosecond clock. Like Dr. Who, Rasala explained, the purpose of these new
prototypes was “to conquer time.” Mag tapes were spinning. There were disk
drives everywhere.

Steve Wallach was there, looking haggard, pale and excited. In addition to
being emissary to Software, Wallach had become an important cheerleader.
He was forever dragging important people in from the hall to show them the
prototype Eagles these days—“signing up the remainder of the corporation,”
he said. At the moment, he was trying to get Holberger’s attention, without
success. Several people were trying to get Holberger’s ear, and, busy as a
blue jay over at Gollum, he didn’t seem to be paying attention to any of them.

“Pretty exciting,” I said to Wallach.
“Yeah,” he said. “But there are other problems now. I’m trying to get the

documentation done. Some people’s writing styles are terrible. They make
mistakes they should have learned to correct in My Weekly Reader.”

Over at Gollum, Holberger was pulling a chip out of a board with a pair of
tweezers.

“Aren’t you gonna take power down first?” Rasala called to him.
“No,” said Holberger without looking up.
“Holberger’s risking his job right here,” said Rasala to the room in

general, in his best deadpan manner.
There was so much equipment in the little lab now that I couldn’t sort it

all out. Many contraptions had their innards bared, bringing bright colors into
the lab—bundles of orange and yellow wires, and brightly colored connector
straps. Eleven fat logbooks for Gollum and Coke lay on the central table.
Images danced on the screens of analyzers. On a table in a corner lay several

printed-circuit boards. They had messages taped over their wires: DOESN’T
WORK. CAN’T BE WRITTEN INTO.

A microcoder called a question to Holberger. Holberger called back,
“Don’t know.”

“There’s a rumor,” declaimed Rasala, still standing in the center of the
room, “that they’re impeaching Holberger, to take away his Honorary
Microcoder’s Award.”

Guyer was at the console of Gallifrey. He was trying to find the cause of a
“subtle” failure in the I/O system, and to this end was trying to develop a
method to increase the frequency of failures.

“That’s a waste of time,” said Rasala.
“No, it’s not,” said Guyer, and he kept on working.
Holberger was inserting his tweezers into the board of a running machine

again.
“Holberger’s risking his job again,” called Rasala.
Suddenly, just a moment later, Holberger and several microcoders—about

a third of the crowd in the lab—went charging out of the room.
“Where you goin’?” said Rasala.
“Home,” said Holberger.
And a moment after that, Chuck Holland came in carrying a “disk pack”;

it looked rather like a helmet. Inside it lay the code that would, presumably,
enable them to play Adventure on an Eagle. Holland installed the disk pack
in Gallifrey’s disk drive, and Rasala sat down at the console. He typed a little,
using only two fingers. His movements looked tentative. He stopped and
made a blubbing sound with his tongue. Guyer pulled up his chair. Wallach,
Holland and one of the diagnostic programmers approached and leaned in
over Rasala’s shoulder. Everyone was giving Rasala advice. It was a big
moment. If it worked, if Gallifrey now opened up Colossal Cave, it would be
the first time, after more than a year and a half of hard, nervous labor, that an
Eagle had done something more than run tests. The computer would at last
exist.

The console scratched out a message.
“Whoops,” said the diagnostic programmer, looking over Rasala’s

shoulder. “You roached the disk.”
“I told ya,” said Wallach. “Ya shoulda put write inhibit.”
“Now we gotta run fix-up,” said Chuck Holland.

This took some time, and then the scene was repeated, all hands gathered
around the console, Rasala at the controls. Rasala typed. The console
scratched out a reply.

“Good-bye,” said Rasala. “Good-bye!”
FATAL ERROR, read the message on the console.
Again, they ran “fix-up,” and again the console replied, to Rasala’s

request to initiate Adventure, FATAL ERROR.
Rasala gave up. There would be no Adventure tonight; Eagle just wasn’t

ready. Rasala fed Gallifrey a diagnostic program that it had already passed,
wrote up a sign, saying DO NOT DISTURB, which he placed on top of the
console, and was on his way out the door, when the console started scratching
out a message. So he went back. The machine had rejected its microcode.
Rasala went to a filing cabinet and leaned against it. Then he took a deep
breath and went back to the machine. He and Guyer made some adjustments
and finally Gallifrey started running again.

“Why’s it working now, all of a sudden?” I asked.
“We don’t know,” said Rasala. “We don’t know everything about the

machine.”
Reaching for some comforting words, I said, “Well, at least some of it

works.”
“Yeah,” said Guyer. “And someday we’ll know which part.”

Eagle was failing its Multiprogramming Reliability Test mysteriously. It
was blowing away, crashing, going to never-never land, and falling off the
end of the world after every four hours or so of smooth running.

“Machines somewhere in the agony of the last few bugs are very
vulnerable,” said Alsing. “The shouting starts about it. It’ll never work, and
so on. Managers and support groups start saying this. Hangers-on say, ‘Gee, I
thought you’d get it done a lot sooner.’ That’s when people start talking
about redesigning the whole thing.”

Alsing added, “Watch out for Tom now.”
West sat in his office. “I’m thinking of throwing the kids out of the lab

and going in there with Rasala and fix it. It’s true. I don’t understand all the
details of that sucker, but I will, and I’ll get it to work.”

He called for Rasala one evening. “I want to go into the lab.”

“Gimme a few more days,” said Rasala.

On September 25 Rasala said, “As of this morning, Eagle ran
Multiprogramming twelve hours overnight without failing.”

Holberger said, “I know how West felt, but he couldn’t have done a
thing.”

Back in his office West said: “It wasn’t an empty threat. The game, of
course, though, is that when I say I’m gonna go in there, they haul ass,
because they assume it’s gonna be some kind of trivial, dumb thing.”

It had been such a problem, having to do with noise. But it wasn’t quite
over.

On October 4 most of the team clustered around Gallifrey’s console, with
Holberger at the controls this time, and the machine opened up Colossal
Cave.

Holberger had never played Adventure before, and he wasn’t about to
take it on seriously now. He fiddled around in the style of a complete novice,
didn’t even meet the pirate or garner a treasure, and then shut the game down.

There was another game in progress that interested him more. They were
running the Whetstones again.

They watched and waited most of that day. When it was all over, there
was a victory. Now that Eagle was an almost fully functional machine, the
figures were much better. They came out to within a few digits of what the
designers had hoped for more than a year before. West’s commandment was
satisfied: Eagle was about ten percent faster than VAX on single precision—
at least according to the published figures for VAX—and it was about twice
as fast as the fastest Eclipse.

But Gallifrey, the lead machine now, still wasn’t all there. It was running
all the toughest diagnostics, but failing occasionally on some of the lower-
level ones. The Hardy Boys would leap for their analyzers, run the test again,
and the failure wouldn’t happen.

“A flake.”
But where was it?
On October 6 the vice president, Carl Carman, came down to the lab as

usual, and they told him about the flakey.
Carman is a man of medium height, in his forties, fair-haired, with skin

rather pink from the sun—all in all cherubic-looking. He smiles like Alsing,
mysteriously.

The ALU was sitting outside Gallifrey’s frame, on the extender Gallifrey
was running a low-level program. Carman said, “Hmmmmm.” He walked
over to the computer and, to the engineers’ horror, he grasped the ALU board
by its edges and shook it. At that instant, Gallifrey failed.

They knew where the problem lay now. Guyer and Holberger and Rasala
spent most of the next day replacing all the sockets that held the chips in the
center of the ALU, and when they finished, the flakey was gone for good.

“Carman did it,” said Holberger. “He got it to fail by beating it up.”

They still had to prepare reams of documents. They had to run more tests.
Software had to complete the vast, complex 32-bit system software. Now and
then they would meet new crises, failures that usually but not always turned
out to be flakey ones. They’d continue to bite their nails over the supply of
PALs. Manufacturing would have to figure out how to build Eagles and the
Eclipse Group would have to help. Jim Guyer still had to make the I/O
system work right, and that would take a while, and in the meantime Rasala
would go on saying what he had been for these many months—as if by
naming the worst he could prevent it from happening: “There’s still a small
but finite chance that there won’t be an Eagle.” Nevertheless, they had
reached one approximate end.

“It’s a computer,” Rasala said.

On Monday, October 8, a maintenance crew came into the lab with a large
dolly. They loaded Gallifrey Eagle onto it carefully. They wheeled it down
the hall to the Software Department. Several of the Eclipse Group walked
along, as escorts, and a few of them went out that night and hoisted a few
beers. But there was no ceremony this time. A few days later, in the gloom of
the Cain Ridge Saloon, they shoved together some tables and held another
PAL Award ceremony. Standing to give the presentation, Rasala paused, and
turning to the people sitting next to him he said behind his hand, “It’s just an

excuse to go out drinkin’ ”
Back in January Rasala had said they would open champagne when an

Eagle went to Software. They had drunk champagne before, however, at less
important milestones. Besides, now that the time had really come, Rasala no
longer felt like drinking champagne. Partly, he was tired, more tired than he
had ever felt in his life. Partly, he had begun to feel an emptiness of purpose
looming; he had lived with “la machine” so long that he could not easily
imagine life without it. In this mood, other problems took on perhaps an
exaggerated importance. Something was going wrong, though—not with the
machine, not with the group exactly—but they were in trouble.

A month or so before Gallifrey was shipped to Software, I had been
chatting with Rasala in the hallway outside his office when an executive
turned the corner, walking toward us. “Now we stop talking,” muttered
Rasala. So we did. He did not resume until the person had passed. And on the
evening that I had come to see Rasala play Adventure on Gallifrey—the time
the machine just wasn’t up to the task—the basement had seemed steamy
with intrigue. Rasala had said, cryptically, that false rumors were running
around to the effect that West was on his way out.

I stopped in to see West. He had gotten his hair cut—short like a soldier’s
or a respectable businessman’s—and he looked plucked. He looked wan. He
looked terribly thin. His face glowed slightly when I asked about the rumors.
Smiling slightly, he remarked (paraphrasing Mark Twain), “The rumors of
my death are greatly exaggerated.”

West had said once, “Data General is a paranoid place, and the Eclipse
Group does nothing to, uh, relieve that.” I’d heard a story, no doubt
apocryphal, about a man who while working at Data General became so
fearful of his colleagues that he took to crawling under his desk in order to
read his mail. I’d been having some small arguments with the company
myself, and that evening I’d twisted them out of all proportion in my mind.
Coming into the main lobby at Westborough, noticing the usual glances of
the others sitting there and the receptionist’s pleasant smile, I had the feeling
that they knew something about me that I didn’t know. This passed, but I felt
lightened when I left the building that night with Rasala.

Rasala looked grim. I thought perhaps it was the aborted launch into
Adventure, but he seemed to feel positively cheerful about that. “If it never
failed, there wouldn’t be any point in making it work, would there?” he said.

We went to a Burger King a few miles from the plant. While we were
waiting in line, Rasala said to me, “You felt it tonight.”

“What?”
“Your whole mood changed. You were relieved to get out of there.”
I agreed that was so. Then I asked him if he ever felt glad to get out of

there.
Rasala looked me over, up and down, as if to say it was a foolish question.

“Once a night,” he replied.

15

CANARDS

WEST’S RISKY DECISION to use the new chips called PALs had some
troublesome consequences. Months passed before Data General could be sure
of getting enough of those parts to manufacture Eagles. So the machine’s
public debut was put off, again and again, until the spring of 1980. As time
went on, however, it became clear that West had made the right choice; PALs
really were a chip of the future. Moreover, the delay gave the programmers
time to create a much more impressive number of software options than
usually accompanies brand-new machines. Diagnostics, meanwhile, had time
to perfect a full set of microdiagnostic programs, which would help make
Eagle easy to repair. There was time, too, for the Eclipse Group to refine the
machine. Computers are sensitive things. With some makes, you dare not
switch the boards of one with those of another supposedly identical machine.
But you could switch boards among Eagles without worry by the time they
were done.

A few weeks before the announcement, Eagle did come down with
another evil-seeming bug. It took the Hardy Boys a long time to isolate it.
They got close but could not fully identify it. They were stymied, until
Holberger came up with a solution. It involved the addition of a single wire to
a circuit. He said he couldn’t explain why the repair would work. He just
knew that it would. Rasala bet it wouldn’t and as a consequence wound up
buying Holberger coffee for the next couple of weeks.

Holberger made his mysterious repair over in the Software Department’s
area. Watching, one of the programmers declared that logic design certainly
was a peculiar art. But, truly, the Hardy Boys had arrived at the state in which
they could feel what was wrong with their machine. And there wasn’t much
wrong with it, by the time it finally got out the company’s door.

In the months that followed Eagle’s debut, it would become evident that

the computer was probably going to be a big win, just as West had promised.
Rumor had it that by early 1981 the dollar value of orders for Eagles
represented more than ten percent of the value of all new orders for Data
General equipment. So it did seem that Eagle had arrived just in time to
rejuvenate the upper end of the company’s product line. Data General was
already late entering the supermini market, and might have missed the market
altogether if it hadn’t been for Eagle, because by the spring of 1981 North
Carolina still had not produced a machine.

Who had been the prime mover behind this success, this act of recovery?
The company’s system of management? or the team itself? or West, or Edson
de Castro perhaps?

Engineers in the Eclipse Group who had been around for some years still
referred to de Castro as “the Captain” or as “the Man in the corner office,”
often in tones of amazement, admiration and fear. Eventually, some of the
survivors of the team would refer to him, forthrightly, as “God.”

“De Castro’s down here only as a presence,” West said, “yet as a presence
he’s an iron hand.” Another time, West remarked, “De Castro does this crazy,
apparently bungled stuff, but after a while you see this incredible order.” And
he told me: “It was de Castro who said, ‘No mode bit.’ It turns out that in a
very succinct way he was describing the perfect machine.” A succinct
description indeed, if it was a description at all. West seemed to be
suggesting that de Castro might have orchestrated from afar the entire project,
even including West’s own conviction that Eagle’s creators were working
largely on their own. “I think we all have that feeling about de Castro,” said a
member of the team. He was only partly joking. Several engineers told me
how sharp de Castro was on technical issues. Come to him with a plan that
has a weak spot in it, a weak spot that you think you’ve cleverly disguised,
they said, and he’ll find it every time. You didn’t put one over on de Castro.
Things weren’t done behind his back. Never mind how big the company had
gotten, he was still in control.

Four straight-backed vinyl-upholstered chairs face de Castro’s desk,
which is absolutely clean, save for one small stack of papers with their edges
squared. De Castro sits at a slightly lower elevation than his visitors, and
when he sits down behind his desk, most of him disappears. He becomes, as

it were, a sphinx—half desk, half man. He is thin and balding and wears on
this occasion neither jacket nor tie. Asked about the meaning of the term
competition for resources, he smiles broadly and says: “It’s there. What it
really does, in a sense, is allows for the accomplishment of certain projects
that some people would prefer not to do.”

Had the Eagle project always interested him or had it grown in importance
gradually?

“From the start it was a very important project.”
Was he pleased with the work of the Eclipse Group?
“Absolutely!” His voice falls. “They did a hell of a job.”
But some members of the team felt that they had been rather neglected by

the company.
“That doesn’t surprise me,” he says. “That’s frequently the case. There’s

often a conflict in people’s minds. How much direction do they want?”
The team seemed to think of itself as an independent, entrepreneurial

outfit within the company. Did that happen by accident or had he tried to
foster that feeling?

De Castro has turned his head toward a wall during a lull in the
conversation. Across his face there seems to flicker a look of weariness. He
turns back, smiling again. “I think that if you try to foster that attitude, you
will be unsuccessful…. I think that from our point of view we try to provide
an environment where those things oughta happen.” His voice falls, and he
adds, “In cases where they oughta happen.”

Maybe de Castro orchestrated the project, or maybe, having put all the
parts in place, he just let it happen—which might come to the same thing.
Speaking privately, a veteran engineer bristled at that idea. “De Castro isn’t
that good,” he said. “He’s lucky and he’s smart, but most importantly, he has
people around him like West, who pull his ass out of a fire and then attribute
it all to him.” Members of the team had their own interpretations.

A month after Gallifrey Eagle was rolled slowly down the corridor to
Software, Ed Rasala and several of the Hardy Boys got together at the Cain
Ridge Saloon and did some reminiscing—disputatiously, as usual. At one
point, Jim Guyer said: “We didn’t get our commitment to this project from de
Castro or Carman or West. We got it from within ourselves. Nobody told us

we had to put extra effort into the project.”
Ken Holberger burst out laughing.
Guyer raised his voice. “We got it from within ourselves to put extra

effort in the project.”
Laughing hard, Holberger managed to blurt out, “Their idea was piped

into our minds!”
“The company didn’t ask for this machine,” cried Guyer. “We gave it to

them. We created that design.”
Others raised their voices. Quietly, Rasala said, “West created that

design.”
Rasala’s big forearms rested on the table, surrounding a mug of beer. I

thought perhaps I had not heard him right. He had always insisted that Eagle
belonged equally to every member of the team. There was a whiff of heresy
in the air.

“What did you say that West created?”
“Eagle,” said Rasala.
By then the others had stopped arguing and had turned toward Rasala,

who was wearing one of his looks; it seemed to warn against contradiction.
“You mean West created the excitement.”
“No,” said Rasala, in a flat voice. “The machine.”
“The opportunity,” offered Holberger.
“The machine,” said Rasala.
Then there was a moment during which everyone avoided everyone else’s

eyes, and the conversation resumed on another subject.

Adopting a remote, managerial point of view, you could say that the Eagle
project was a case where a local system of management worked as it should:
competition for resources creating within a team inside a company an
entrepreneurial spirit, which was channeled in the right direction by
constraints sent down from the top. But it seems more accurate to say that a
group of engineers got excited about building a computer. Whether it arose
by corporate bungling or by design, the opportunity had to be grasped. In this
sense, the initiative belonged entirely to West and the members of his team.
What’s more, they did the work, both with uncommon spirit and for reasons
that, in a most frankly commercial setting, seemed remarkably pure.

In The Nature of Gothic, John Ruskin decries the tendency of the
industrial age to fragment work into tasks so trivial that they are fit to be
performed only by the equivalent of slave labor. Writing in the nineteenth
century, Ruskin was one of the first, with Marx, to have raised this now-
familiar complaint. In the Gothic cathedrals of Europe, Ruskin believed, you
can see the glorious fruits of free labor, given freely. What is usually meant
by the term craftsmanship is the production of things of high quality; Ruskin
makes the crucial point that a thing may also be judged according to the
conditions under which it was built.

Presumably the stonemasons who raised the cathedrals worked only partly
for their pay. They were building temples to God. It was the sort of work that
gave meaning to life. That’s what West and his team of engineers were
looking for, I think. They themselves liked to say they didn’t work on their
machine for money. In the aftermath, some of them felt that they were
receiving neither the loot nor the recognition they had earned, and some said
they were a little bitter on that score. But when they talked about the project
itself, their enthusiasm returned. It lit up their faces. Many seemed to want to
say that they had participated in something quite out of the ordinary. They’d
talk about the virtues of the machine—“We built it right”—and how quickly
they had done it—“No one ever did it faster; at least, Data General never
did”—and of the experience they had gained—“Now I can do in two hours
what used to take me two days.” One of the so-called kids—kids no longer,
but veterans now—remarked, “This’ll make my resumé look real good.” But,
he quickly added, that wasn’t what it was all about.

Many looked around for words to describe their true reward. They used
such phrases as “self-fulfillment,” “a feeling of accomplishment,” “self-
satisfaction.” Jim Guyer struggled with those terms awhile with growing
impatience. Then he said: “Look, I don’t have to get official recognition for
anything I do. Ninety-eight percent of the thrill comes from knowing that the
thing you designed works, and works almost the way you expected it would.
If that happens, part of you is in that machine.” On this project, he had
reached a pinnacle the day when he finally expunged the “last known bug”
from the board that he’d designed.

Engineers are supposed to stand among the privileged members of
industrial enterprises, but several studies suggest that a fairly large percentage
of engineers in America are not content with their jobs. Among the reasons

cited are the nature of the jobs themselves and the restrictive ways in which
they are managed. Among the terms used to describe their malaise are
declining technical challenge; misutilization; limited freedom of action; tight
control of working patterns. No one who made it through the Eagle project
could in fairness have raised such objections. The work was divided, but it
was not cut to ribbons. Everyone got responsibility for some important part of
the machine, many got to choose their piece, and each portion required more
than routine labor. The team’s members were manipulated, to be sure, and the
unspoken rules of their group were Darwinian, but many of those who made
it through declared that they had been given as much freedom as they could
have wished for.

Rosemarie Seale believed that West had granted them more latitude than
they would have been allowed under a typical manager. She had worked for a
number of other managers, and being the “mother of the team,” she could
speak with authority on how they had been raised:

“The bottom line on this is that effort was done; it was done well, with
very little help from the corporation, if any; a lot of people were allowed to
grow; a lot of people were allowed to feel good about themselves—not a pat
on the back—but deep-down good about themselves. I guess all of us were
trying to prove something. I was trying to prove that I could be more than a
secretary, that I’m a new, liberated woman. Amazing! We all had something
different to prove and we were all trying to prove the same thing.

“He set up the opportunity and he didn’t stand in anyone’s way. He
wasn’t out there patting people on the back. But I’ve been in the world too
long and known too many bosses who won’t allow you the opportunity. He
never put one restriction on me. Tom allowed me to take a role where I could
make things happen. What does a secretary do? She types, answers the
phone, and doesn’t put herself out too much. He let me go out and see what I
could get done. You see, he allowed me to be more than a secretary there.

“I’m not putting Tom up as a paragon of virtue. Many’s the time when I
was bullshit with him. But who could expect life to be perfect? I would do it
again. I would be very grateful to do it again. I think I would take a cut in pay
to do it again.”

A great deal has been written on the question of how to motivate
industrial workers. Presumably such literature arises because so many jobs
have been made so trivial that few people can find any meaning at all in

them. It may be that techniques of management alone can’t cure the problem.
But clearly, for even the most potentially interesting jobs to be meaningful,
there must be managers who are willing to throw away the management
handbooks and take some risks.

Maybe in the late 1970s designing and debugging a computer was
inherently more interesting than most other jobs in industry. But to at least
some engineers, at the outset, Eagle appeared to be a fairly uninteresting
computer to build. Yet more than two dozen people worked on it overtime,
without any real hope of material rewards, for a year and a half; and
afterward most of them felt glad. That happened largely because West and
the other managers gave them enough freedom to invent, while at the same
time guiding them toward success.

West never passed up an opportunity to add flavor to the project. He
helped to transform a dispute among engineers into a virtual War of the
Roses. He created, as Rasala put it, a seemingly endless series of
“brushfires,” and got his staff charged up about putting them out. He was
always finding romance and excitement in the seemingly ordinary. He
welcomed a journalist to observe his team; and how it did delight him when
one of the so-called kids remarked to me, “What we’re doing must be
important, if there’s a writer covering it.”

Engineering is not of necessity a drab, drab world, but you do often sense
that engineering teams aspire to a bland uniformity. West was unusual.
Alsing, who might have traveled anywhere, but whose life had been largely
restricted to the world of engineering, responded most strongly to him.
“West,” said Alsing, “took a bag on the side of the Eclipse and made it the
most exciting project in the company, the most exciting thing in our lives for
a year and a half. West never bored us.”

As for West himself, there is no doubt that he had experienced an odd,
nervous kind of fun. The circumstances had been propitious. There was a
crisis. Solving it called for unorthodox procedures. He’d found, it seems to
me, an opportunity to reconcile for a time two opposite ambitions—one
conventional and quantifiable, the other unorthodox and vague. He was back
in Cambridge, as it were, singing folk songs, while at the same time putting
money on Data General’s bottom line. He could be, for a little while, a
balladeer of computers.

“We’re building what I thought we could get away with,” West had said.

But Eagle sufficed. “With this machine we’re going way beyond what any
one person can do. I always wanted to build something like this.”

Now it was done. The Eclipse Group and the many others who had
worked on the machine—including, especially, Software and Diagnostics—
had created 4096 lines of microcode, which fit into a volume about eight
inches thick; diagnostic programs amounting to thousands of lines of code;
over 200,000 lines of system software; several hundred pages of flow charts;
about 240 pages of schematics; hundreds and hundreds of engineering
changes from the debugging; twenty hours of videotape to describe the new
machine; and now a couple of functioning computers in blue-and-white
cases, plus orders for many more on the way. Already, you could see that the
engineers who had participated fully would be looking back on this
experience a long time hence. It would be something unforgettable in their
working lives. All this, at last, was no canard.

16

DINOSAURS

MONTHS AFTER the machine’s announcement, Jon Blau was cleaning up a
detail; it had to do with an interconnection between Eagle’s CPU and another
device. Looking through some documents, he came across the name of a
cable that he’d never heard of before, and puzzled, he called to Holberger,
“Hey, Ken, what’s this?”

“Ahhh,” said Holberger, looking at the document. “That looks like a Tom
West special.”

At that moment Blau felt he saw it all. For the first time, he fully realized
how many other groups besides his own had been brought into the project, to
perform large and little tasks, such as the design and fabrication of this cable.
There had been a tricky little problem here and this cable solved it. Though
just a detail within a detail, it was crucial. There must have been dozens of
problems like this standing between Eagle and the company’s door, ones that
he and the other recruits had never known existed. Who had anticipated them
and arranged for their solutions? It had to have been West.

Blau knew that he could not have done that job himself. For that job,
you’d need to know a lot, he thought; you’d need intimate knowledge not
only of the CPU but also of the company’s entire product line. He tried to
imagine how hard it must have been to pull everything together. As time
went on, at least one other young engineer would have an experience like
Blau’s; he’d come across a problem and find that West had identified and
solved it long ago. As for Blau, he had often wondered what, if anything,
West did behind his office door. Now he stared at the document before him,
and he exclaimed, “Wow!”

There really was, as West had often said, more to building a computer
than designing and debugging a Central Processing Unit. Someone had to
dream up its general outlines in the first place. Someone had to make sure

that the computer would work compatibly with the company’s existing lines
of peripheral equipment. Someone had to set goals of cost and performance
and see to it that they could be met. These and many other items lay on the
list of what West, often all alone, had accomplished.

Although he had rarely confessed it to anyone in the company, West had
taken a large gamble. “You have to believe in yourself enough to make some
pretty outrageous statements,” he had said, referring to his largely successful
efforts at selling the virtues of Eagle. Secretive as a mother cat about the
location of her kittens, West had masked most of his activities, including his
worrying.

He had once appeared to Carl Alsing as a mysterious stranger passing
through town, and he really was that person—by constitution and preference
a loner. He had never before owned responsibility for such a large project or
for the performance of so many people. He had taken it upon himself, of
course. Somehow, though, he seemed to have gotten it in his mind that he
was responsible for things that he couldn’t possibly control. The team had
signed up to create the computer; he thought he himself had signed up to
make sure that if they did their part, Eagle would get out the door and be a
big success and the team would be rewarded, with stock and prestige and the
freedom to play pinball again. Half the time, while sitting alone in his office,
planning and planning, he had imagined that total failure was imminent.
Danger made life interesting, but anxiety gets tiring after a while.

By late summer West appeared ready for the project to be over, and it
nearly was for him. Late in June, having rounded up supporters in various
divisions of the company, he had for the first time formally presented the
machine to de Castro, at the meeting of executives called the Product Board;
and while de Castro had not responded as enthusiastically as West had hoped
he would, the Captain nevertheless seemed to give the machine his laconic
blessing.

There had been a time when people with CB radios had been overheard in
the vicinity of Westborough discussing the “battle” between the Eclipse
Group and North Carolina; but nervous, invigorating talk of that sort had long
since passed away. After the Product Board, Eagle was out of the closet and
West slackened his public relations campaign. The machine had its own
momentum now. During that summer, West suddenly remembered bike rides
he’d taken with his father on Sunday evenings, and he found time to reassert

that tradition with his oldest daughter. Suddenly, it seemed, he realized that
his children were growing, and apparently he intended now to guide them on
their way. He said one evening: “That’s the bear trap, the greatest vice. Your
job. You can justify just about any behavior with it. Maybe that’s why you do
it, so you don’t have to deal with all those other problems.”

I went sailing off Cape Cod with West for a few days in early August. On
a morning that began with squalls and then became windless, we were
heading out under the power of the boat’s diesel toward the Buzzards Bay
Tower, through a steep, unpleasant sea. Suddenly, the engine quit. West
stared at me, with his mouth half open. Then he set his jaw and turned away.

He disappeared into the cabin and in a moment I heard some banging
from below. A little later he poked his head up through the hatch and said,
“Try it.”

No luck. It wouldn’t start. West disappeared again.
He again poked his head up through the hatch. He was holding the

engine’s manual aloft. “This is a good manual. The only problem is,
ummmmmmmh, it’s not for this engine.” Then he was gone again. More
banging. Try it again. No luck. West’s head appeared in the hatchway,
reading from the manual: “ ‘It is axiomatic that when a diesel engine fails
while underway, that there is a fuel problem.’ ” He laughed, as if he had just
read something funny. Again he was gone and again he reappeared, this time
to spit out a mouthful of diesel fuel. Finally, of course, he made the engine
run.

Back on land, one night shortly afterward, West told me that this incident
was probably the closest I’d ever get to seeing him work on a computer. Then
he remarked: “You assumed I could make it work. But I had never worked on
a diesel engine before, and I was kinda pissed. I didn’t think I could do it.” I
took it he was tired of playing the hero with mechanical things. Clearly, this
was not the same man who would describe himself to virtual strangers by
saying, “I can fix anything.”

West kept on losing weight. He was tired, and he was preparing himself
for a large change.

Nearly a year later, Holberger and Alsing were reminiscing about Eagle in
a barroom, and Holberger remarked that what had happened near the end of

the project reminded him of the typical conclusion of one sort of Western. A
town hires a gunslinger to clean it up, but when he’s taken care of their
problem, he’s still a gunslinger and sooner or later the respectable citizens are
going to run him out of town.

Alsing warmed to the analogy at once. “Of course! Of course! That’s a
classic American story.”

When the new recruits had arrived, they had been told that the Eclipse
Group represented the very heart of Data General. The veterans who told
them so certainly believed it. Their group, as they saw it, was the most
dogged, hardworking, practical, productive and dangerous in the company, a
bastion of the old successful ways, a paradigm of the company as it had been
when it was small. They believed in the rule of pinball: if you win, you get to
play again; but failure is unthinkable, so you’d better let no one get in your
way.

Holberger’s remark about gunslingers recalled some old scenes:

• I’m sitting in West’s office taking notes, when I look up and see West
eyeing my pad from across his desk. He smiles. Then he reads my notes to
me. In business, he explains, still smiling, you learn to read memos upside
down.

• West is standing at his Magic Marker board, drawing a diagram of the
company’s hierarchy as it affects his group. “There’s some dogs and cats
out here,” he says. “This guy is a nonissue.” He draws a large X over
someone’s name. “This guy disappears in time.”

• Holberger sits at his terminal, sending out a bogus EMERGENCY
WARNING MESSAGE.

• Rasala goes thundering into Diagnostics.
• West sits in his office and declares, “The only way I can do this machine is

in this crazy environment, where I can basically do it any way that I
want.”

When the Eclipse Group started building Eagle, the management structure
around them was extraordinarily bare. During the project, new executives
were hired to fill the gaps. They came from other companies and did not

know, of course, the odd, unspoken rules by which the Eclipse Group played.
The team’s environment was changing, and the veterans felt it, in small ways
and large: Rasala complaining about a new rule that forbade employees from
taking home used packing boxes without going through the formality of
getting a property pass, West in a traffic jam outside the plant one morning,
muttering: “This is really beginning to make me mad. I used to be able to
park at the front door of this company.”

One day Rasala, Holberger and West were sitting around in West’s office,
voicing general agreement that beating people up didn’t seem to get results
anymore. Most other groups just didn’t seem to be willing to put in lots of
overtime on a machine anymore. Picking up a line from West—that the
Eclipse Group might be “a dinosaur” of a team—Holberger suggested that
they order some T-shirts, which would bear the name Eclipse Group under
the image of a panting Tyrannosaurus rex.

West and the other leaders of the Eclipse Group had acquired some
enemies who would not mind seeing them taken down, and West got into a
long-running battle, which heated up as the debugging approached
completion. As he explained it to Rasala, West felt he was fighting to
preserve the group’s substantial freedom and to prevent a situation in which
the team would simply be delegated to do certain jobs. Rasala said: “The real
fun—the way you get an Eagle out the door—is to get the guys to invent it, to
come up with an innovative idea that’s gonna make money. Once you’ve got
that, there’s no problem motivating people. Once we’ve got that, okay, baby,
we’re gonna do a hell of a job. And I think that’s what West is fighting for.’

Rasala observed the battle with mounting anxiety and then with
resignation. Most people, at one time or another in their careers as adults,
reenact the molting of their adolescences. Rasala liked to say that he spent his
professional childhood at Raytheon, and that at Data General, under West, he
grew up. For a long time he felt afraid that West would leave and that he
would have to take over the group, but gradually, during many long talks
with West, he became fairly comfortable with the possibility.

One day in September, at a fairly large meeting attended by bosses from
outside the group, West criticized Rasala for some mistake. Feeling that he
had deserved the mild rebuke, Rasala wasn’t angry. Afterward, however,
West took him aside. West explained that he was being accused of criticizing
other groups but never his own. That was why he had publicly rebuked

Rasala in the meeting: he was trying to prove the allegation false. He told
Rasala he was very sorry he had done it.

West, Rasala felt, was growing rather desperate, and it made him sad. At
the beginning of November, Rasala remarked: “The last two weeks I’ve had
strange conversations with West. He’s beginning to teach me the loose ends.
I get the strange feeling I’m in finishing school.”

In retrospect, Alsing was convinced that West stayed around until the
machine was safe from local politics. In November West called the team
together and told them that he was leaving them; he was going to that distant
country, the upstairs of Westborough, to take another job, connected with
marketing, a job that would take him often to Japan. Thus he supplied them
one answer to the question of what happens to computer engineers who pass
forty. West said that Rasala, Wallach and Alsing would run the group now.
He told them that their new projects were all lined up and assured them, “The
fundamentals are right.” He said he expected all to continue, as before.

Some people in the basement wore broad smiles that day and many of the
team’s young engineers felt indifference. To the West loyalists, it seemed as
though the earth had moved.

In mid-November West went away on a business trip and Rosemarie
cleaned out his office. The last item to go was the clock in the oak case. A
technician who had worked under West for some years got a cart and put the
clock on it. Rosemarie started leading him down the hall toward the elevator.
Alsing saw them go by his office and he got up from his desk. “I’ll hold the
clock on the cart,” he offered, “in case we go over a bump.” Rasala joined the
procession and so did Jon Blau.

When they got upstairs, they were lost. They had to ask directions to
West’s new office, from “some stranger in a suit,” as Alsing put it. West’s
new abode was like his old one—narrow, windowless. They put the clock on
the floor and then they all sat down. Rosemarie bustled out, and in a moment
returned. “You guys comin’?”

Alsing said, “No, we’re having a meeting in West’s office.”
“It’s our three-o’clock Friday meeting,” said Rasala.
Finally, they left. Going back downstairs, Alsing had the feeling he had

just attended a funeral.

I visited West not long after that ceremony. He confessed: “I feel awful
withdrawal symptoms. I wake up at three A.M., sweating, worried and so on.
It’s a real problem becoming just an everyday Joe.” But then he got up off his
couch and lingered by his fireplace, a beer in his hand. “It’s really tempting
for me to look back on Eagle and bask in it now,” he said. He made his long
“Ummmmmmmmmh” and went on. “Next question you gotta ask yourself—
is that a trap? “Ahhhhhhhhnd, the answer is: Yeah, probably.”

On his coffee table, lying among heaps of magazines, I noticed, was a tall
stack of books about the Orient. West was going to help show engineers at
the Japanese company Data General had partly acquired how to build Data
General computers. He was going to become something of a far-wandering
engineer again. He was going to help launch Data General’s invasion of the
Far East. I thought that someone ought to warn them.

West was grinning now. He was saying: “Japan! The Orient! Man, I could
really get into building machines in Japan!”

West had risen from the small death of leaving the team. In departing,
Josh Rosen had felt reborn. When I looked him up many months later, I
learned that he had gone to work for another computer company and was
defining the architecture of another 32-bit computer. He hadn’t gone to a
commune, except perhaps in a comparative, figurative sense. He was working
eight-hour days and five-day weeks, and he professed himself happy at last.
Dave Peck quit Data General, discovering in the process that after having
worked at the company practically since its founding, he was entitled to a
pension: when he turned sixty-five, he would receive the grand sum of fifty-
three dollars a month. Steve Wallach gave the speech he had once dreaded,
describing Eagle’s architecture to a jury of peers, at a meeting of a society of
computer professionals, and when he was done, they got up and applauded
—“the ultimate reward,” he said. But Wallach left the Eclipse Group to work
in another part of the company, and a year or so later he left Data General. As
for Carl Alsing, he too resigned from Data General and took a job in
California—“at much higher pay,” he said, but he added, “That wasn’t why I
left.” Both he and Wallach had felt unappreciated by the company. In the
project’s aftermath, Alsing had most of his former responsibilities taken
away. “I feel,” he said then, with a small smile rather like West’s, “that I am
free to go.”

Unquestionably, Data General was changing. For one thing, the company

was falling on hard times. Not long after Gallifrey Eagle was wheeled
carefully down the hall to Software, Data General released a disappointing
financial report, their first in many years. Profits were off. Over the next year
and a half, the value of a share in Data General plunged, then rose, then fell
again. More disappointing earnings reports were filed and speculation about
the causes began in earnest. Business Week blamed de Castro’s style of
management mainly, but appeared not to understand that style any better than
anyone else. It did seem that the company had let some of its product line
become outworn, and while there was no telling just what had been lost by
not fielding a 32-bit machine sooner, it was clear that without Eagle, Data
General’s present troubles would have looked far worse then they did.

I did not think Data General had the look of a doomed enterprise, but
rather of one that was suffering harsh growing pains. During this period, what
seemed to be an unusually large number of people in crucial positions left the
company; they included important sales personnel and several vice presidents
—among them, Carl Carman. Downstairs, remembering that the Eclipse
Group had once been called “a strong foundation,” one of the team asked, “If
we’re such a great foundation, who are we holding up?”

For at least some of the old hands, the feeling that they had gone
underground to build their computer had never been stronger. Surfacing, they
found the company in apparent turmoil. And what they returned to seemed
nothing like the hero’s welcome that they had expected.

Some of the problem was inward and inevitable. A number of the
engineers confessed to feeling those long-anticipated “postpartum blues”;
they spoke of feeling “that empty spot.” Some of the problem lay in the local
political situation. In the aftermath of West’s departure, psychologists came
down to visit the team and handed out questionnaires. These seemed
designed, one young engineer felt, to find out what was wrong with the
group, and he couldn’t understand it. Why were they being asked that
question, given what the team had accomplished? As for the top managers of
the group, they felt that they were under attack. That situation eased within a
few months, but the effects lingered. For the senior managers of the team, the
project had this bitter end: that far from feeling rewarded, they thought that
they were being neglected and maybe even punished for what they had done.
Obviously, the company didn’t intend to produce such a sour finale, but
clearly those in authority didn’t take in timely fashion all the right preventive

steps.
Bitterness wasn’t general or enduring. Many in the group got promotions,

business cards, a few free trips and, though they were a very long time in
coming; stock options. To their pride and delight, a number of the team’s
junior members got to participate in the publication of technical papers about
the machine. Most important, many got to play pinball—in the sense that
they went to work on those interesting projects that West had concocted and
left behind for them.

In the fall of 1980 the Eclipse Group was disbanded and its members
dispersed into several new and smaller groups. Some of the old crew
mourned the team’s passing. One said, angrily: “It was a group that was
formed and achieved this remarkable thing for the company, and the
company has deemed to reward that group by blowing it up. It’s really sad.”
Many others, however, shrugged. They felt that the group’s demise had been
inevitable, on the one hand, and that it wasn’t really dead on the other.

After the reorganization, Ed Rasala decided to leave Data General, and
although the authorities tried hard to keep him, he finally did get away. He
joined Alsing out west in California. West’s chosen heir, Rasala was the last
of the old group’s managers to leave the team, and so his going had the status
of a milestone.

West stayed with the company. He had never imagined that the rule of
pinball would be a lie for his loyal lieutenants, and he had dreamed of the
group perpetuating itself. It took him a while, but eventually he seemed to
find for himself a workable attitude toward the departures of his friends and
the team’s demise. “Yeah, it’s all blown apart, but the ethic’s still in place,”
he said. “In some sense spreading that around may be beneficial.”

West added: “It was a summer romance. But that’s all right. Summer
romances are some of the best things that ever happen.”

EPILOGUE

LONG BEFORE IT DISBANDED formally, the Eclipse Group, in order to assist the
company in applying for patents on the new machine, had gathered and had
tried to figure out which engineers had contributed to Eagle’s patentable
features. Some who attended found those meetings painful. There was
bickering. Harsh words were occasionally exchanged. Alsing, who during the
project had set aside the shield of technical command, came in for some
abuse—Why should his name go on any patents, what had he done? Someone
even asked that question regarding West. Ironically, perhaps, those meetings
illustrated that the building of Eagle really did constitute a collective effort,
for now that they had finished, they themselves were having a hard time
agreeing on what each individual had contributed. But, clearly, the team was
losing its glue. “It has no function anymore. It’s like an afterbirth,” said one
old hand after the last of the patent meetings.

Shortly after those meetings, Wallach, Alsing, Rasala and West received
telegrams of congratulations from North Carolina’s leader. That was a classy
gesture, all agreed. The next day Eagle finally went out the company’s door.

In New York City, in the faded elegance of the Roosevelt Hotel, under
gilded chandeliers, on April 29, 1980, Data General announced Eagle to the
world. On days immediately following, in other parts of the country and in
Canada and Europe, the machine was presented to salesmen and customers,
and some members of the Eclipse Group went off on so-called road shows.
About a dozen of the team attended the big event in New York. There was a
slick slide show. There were speeches. Then there was an impressive display
in a dining hall—128 terminals hooked up to a single Eagle. The machine
crashed during this part of the program, but no one except the company
engineers noticed, the problem was corrected so quickly and deftly. Eagle—
this one consisted of the boards from Gollum—looked rather fine in skins of
off-white and blue, but also unfamiliar.

A surprisingly large number of reporters attended, and the next day
Eagle’s debut was written up at some length in both the Wall Street Journal

and the financial pages of the New York Times. But it wasn’t called Eagle
anymore. Marketing had rechristened it the Eclipse MV/8000. This also took
some getting used to.

The people who described the machine to the press had never, of course,
had anything to do with making it. Alsing—who was at the premiere and who
had seen Marketing present machines before, ones he’d worked on directly—
said: “After Marketing gets through, you go home and say to yourself,
‘Wow! Did I do that?’ ” And in front of the press, people who had not even
been around when Eagle was conceived were described as having had
responsibility for it. All of that was to be expected—just normal flak and
protocol.

As for the machine’s actual inventors—the engineers—most who came
seemed to have a good time, although some did seem to me a little out of
place, untutored in this sort of performance. Many of them had bought new
suits for the occasion. After the show, there were cocktails and then lunch,
and during this time most of the engineers stuck together, like young men at a
dance. At lunch, they occupied a table all their own. It was a rather formal
luncheon, and there was some confusion at their table as to whether it was
proper to take first the plate of salad on the right or the one on the left.

West came, too. He did not sit with his old team, but he did talk easily and
pleasantly with many of them during the day. “I had a great talk with West!”
remarked one of the Microkids.

He wore a brown suit, conservatively tailored. He looked as though he’d
been wearing a suit all his life. He had come to this ceremony with some
reluctance, and he was decidedly in the background. At the door to the show,
where name tags were handed out, West had been asked what his title was. “
‘Business Development,’ ” he’d said. At the cocktail party after the formal
presentation, a reporter came up to him: “You seem to know something about
this machine. What did you have to do with it?” West mumbled something,
waving a hand, and changed the subject. Alsing overheard this exchange. It
offended his sense of reality. He couldn’t let the matter stand there. So he
took the reporter aside and told him, “That guy was the leader of the whole
thing.”

I had the feeling that West was just going through motions and was not
really present at all. When it was over and we were strolling down a busy
street toward Penn Station, his mood altered. Suddenly there was no longer a

feeling of forbidden subjects, as there had been around him for many months.
I found myself all of a sudden saying to him: “It’s just a computer. It’s really
a small thing in the world, you know.”

West smiled, softly. “I know it.” None of it, he said later, had come out
the way he had imagined it would, but it was over and he was glad.

The day after the formal announcement, Data General’s famous sales
force had been introduced to the computer in New York and elsewhere. At
the end of the presentation for the sales personnel in New York, the regional
sales manager got up and gave his troops a pep talk.

“What motivates people?” he asked.
He answered his own question, saying, “Ego and the money to buy things

that they and their families want.”
It was a different game now. Clearly, the machine no longer belonged to

its makers.

ACKNOWLEDGMENTS

MANY PEOPLE—in the end, there were hundreds—worked on the project that
this book describes. I could not name them all in the text, nor does it seem
just to attempt to name them in this note, for undoubtedly I would miss
someone. I have not even been able to name all of the hardware engineers
who participated. Several made important contributions and are not
mentioned. Others who also did a great deal of the work are awarded only a
small amount of space in the narrative. To all, I offer my regrets, and I hope
that they do not share them. In any case, no one who reads this book should
imagine that its characters make up a complete cast.

My thanks to all my friends and acquaintances in the world of computers,
and to Susan T. and Muffet for help and hospitality. For their editorial
assistance and encouragement, my thanks to Upton Brady, Peter Davison,
Robert Manning, Sue Parilla and Michael Brandon. Thanks for general all-
around help to Maureen Brown, Avril Cornel, Nina Engelhardt, Louise
Desaulniers, Natalie Greenberg and Martha Spaulding; and for special
assistance, to Paul Rich. Thanks for listening, to Stuart Dybek, Jon A.
Jackson and Mike Rosenthal; and for their excellent, timely counsel, thanks
to Messrs. Rob Duggan, George Hall, Greg Pilkington, Ike Williams and Tim
Rivinus; and for painstaking work on my behalf, my thanks to Mark Kramer.
And many thanks, of course, for all of the above and more, to my parents and
to Fran.

ALSO IN PAPERBACK

Lonely Hearts of the Cosmos: The Story of the Scientific Quest for the
Secret of the Universe
by Dennis Overbye

“Endlessly enthralling…. A rollicking, warts-and-all home movie of a
family of astronomers, particle physicists, astrophysicists, and assorted
hangers on…. A delightful, comic, and often ironic masterpiece.”

—John Wilkes, San Francisco Chronicle

“This is one of the most ambitious popularizations of science to be
attempted in recent memory. Seldom has any science journalist said so
much, so well, in so few pages.”

—Timothy Ferris, Scientific American

Skunk Works
by Ben R. Rich and Leo Janos

From the development of the U-2 to the Stealth fighter—the true story
of America’s most secret and successful aerospace operation.

“A richly detailed, thoroughly absorbing account of one of the great
chapters in the history of aircraft technology…. A gripping
technothriller in which the technology is real.”

—Richard Perle, New York Times Book Review

“Thoroughly engrossing.”
—Lawrence S. Dietz, Los Angeles Times

Available wherever books are sold

Contents

FRONT COVER IMAGE
WELCOME
DEDICATION
PROLOGUE: A GOOD MAN IN A STORM

CHAPTER 1: HOW TO MAKE A LOT OF MONEY
CHAPTER 2: THE WARS
CHAPTER 3: BUILDING A TEAM
CHAPTER 4: WALLACH’S GOLDEN MOMENT
CHAPTER 5: MIDNIGHT PROGRAMMER
CHAPTER 6: FLYING UPSIDE DOWN
CHAPTER 7: LA MACHINE
CHAPTER 8: THE WONDERFUL MICROMACHINES
CHAPTER 9: A WORKSHOP
CHAPTER 10: THE CASE OF THE MISSING NAND GATE
CHAPTER 11: SHORTER THAN A SEASON
CHAPTER 12: PINBALL
CHAPTER 13: GOING TO THE FAIR
CHAPTER 14: THE LAST CRUNCH
CHAPTER 15: CANARDS
CHAPTER 16: DINOSAURS

EPILOGUE
ACKNOWLEDGMENTS
ALSO BY TRACY KIDDER
ACCLAIM FOR TRACY KIDDER’S THE SOUL OF A NEW MACHINE

COPYRIGHT

Also by Tracy Kidder

The Road to Yuba City
House

Among Schoolchildren
Old Friends
Home Town

Edited by Tracy Kidder
The Best American Essays 1994

ACCLAIM FOR TRACY KIDDER’S
THE SOUL OF A NEW MACHINE

“Will a computer ever be able to think? The question is as old as the
computer itself. Yet the possibility continues to unnerve the nervous. The
answer, as gleaned from Tracy Kidder’s magnificent book, is an emphatic no,
and the reason is simple. The people who build computers up from a skein of
wires, a box of silicon, and an odd assortment of nuts, bolts, and screws, are
so in love with making their machines work that they will never hand over
the option to the computers. The soul of a new machine, says Kidder, is
nothing more than the collective soul of those who put the machine
together…. For him, the computer is a fascinating piece of technology, but
even more fascinating is the profound obsession of the engineer…. Kidder
does a fine job explaining the complexities of a computer…. He never loses
touch with the engineers—their quirks, their bleary eyes, their nervous
giggles, their stunning insights, and, above all, their singular devotion to their
cause.”

—Natalie Angier, Discover

“Superb… a book that computer engineering has deserved for a long time….
All the incredible complexity and chaos and exploitation and loneliness and
strange, half-mad beauty of this field are honestly and correctly drawn here.”

—Robert Pirsig, author of Zen and the Art of Motorcycle Maintenance

“Tracy Kidder can turn the most unlikely story into riveting drama.”
—Anne Tyler

“The Soul of a New Machine was first published when mini-supercomputers
were still the stuff of science fiction…. It still serves as an interesting history
of the machine that conquered the world.”

—Library Journal

“Tracy Kidder is a virtuoso of lucid and compelling narrative.”
—R. Z. Sheppard, Time

“The Soul of a New Machine is a near-novelistic suspense story drawn from
the actual development of a new high-performance computer…. Even a
curious outsider can get a feeling for the difficulties [the engineers] faced and
the ingenuity and inspiration they brought to bear on a highly doubtful
assignment.”

—Frederick H. Guidry, Christian Science Monitor

“Even someone like this reviewer, who barely understood the difference
between computer hardware and software when he began The Soul of a New
Machine, was able to follow every step of the debugging mystery, even
though it involves binary arithmetic, Boolean algebra, and a grasp of the
difference between a system cache and an instruction processor…. I also
found it exciting…. Kidder’s prose could make you visualize a borasnadafras
doing a cherbstorg, if there ever were such things.”

—Christopher Lehmann-Haupt, New York Times

“Brilliant, concise, and original…. If you like the writing of John McPhee,
you’ll love the work of Tracy Kidder…. He has written The Soul of a New
Machine with a reporter’s eye, a novelist’s heart, and a technician’s
understanding…. What makes Kidder’s book so rich is that he describes the
human psyche as well as the computer industry.”

—Playboy

Copyright

Copyright © 1981 by John Tracy Kidder

All rights reserved. Except as permitted under the U.S. Copyright Act of
1976, no part of this publication may be reproduced, distributed, or

transmitted in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of the publisher.

Little, Brown and Company
Hachette Book Group

237 Park Avenue
New York, NY 10017

Visit our website at www.HachetteBookGroup.com.
www.twitter.com/littlebrown

First ebook Edition: August 2011

Back Bay Books is an imprint of Little, Brown and Company. The Back Bay
Books name and logo are trademarks of Hachette Book Group, Inc.

A portion of this book, in different form, first appeared in The Atlantic.

The publisher is not responsible for websites (or their content) that are not
owned by the publisher.

ISBN: 978-0-316-20455-2

http://www.HachetteBookGroup.com
http://www.twitter.com/littlebrown

	FRONT COVER IMAGE
	WELCOME
	DEDICATION
	PROLOGUE: A GOOD MAN IN A STORM
	CHAPTER 1: HOW TO MAKE A LOT OF MONEY
	CHAPTER 2: THE WARS
	CHAPTER 3: BUILDING A TEAM
	CHAPTER 4: WALLACH’S GOLDEN MOMENT
	CHAPTER 5: MIDNIGHT PROGRAMMER
	CHAPTER 6: FLYING UPSIDE DOWN
	CHAPTER 7: LA MACHINE
	CHAPTER 8: THE WONDERFUL MICROMACHINES
	CHAPTER 9: A WORKSHOP
	CHAPTER 10: THE CASE OF THE MISSING NAND GATE
	CHAPTER 11: SHORTER THAN A SEASON
	CHAPTER 12: PINBALL
	CHAPTER 13: GOING TO THE FAIR
	CHAPTER 14: THE LAST CRUNCH
	CHAPTER 15: CANARDS
	CHAPTER 16: DINOSAURS
	EPILOGUE
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	ALSO BY TRACY KIDDER
	ACCLAIM FOR TRACY KIDDER’S THE SOUL OF A NEW MACHINE
	COPYRIGHT PAGE

